
Intelligently Recommending Key Bindings on Physical
Keyboards with Demonstrations in Emacs
Shudan Zhong

University of California, Berkeley
Berkeley, California, USA

sdz@berkeley.edu

Hong Xu∗
University of Southern California
Los Angeles, California, USA

hongx@usc.edu

ABSTRACT
Physical keyboards have been peripheral input devices to electronic
computers since early 1970s and become ubiquitous during the past
few decades, especially in professional areas such as software pro-
gramming, professional game playing, and document processing.
In these real-world applications, key bindings, a fundamental ve-
hicle for human to interact with software systems using physical
keyboards, play a critical role in users’ productivity. However, as
essential applications of artificial intelligence research, research on
intelligent user interfaces and recommender systems barely relates
to key bindings on physical keyboards. In this paper, we develop a
recommender system (referred to as EKBRS) for intelligently recom-
mending key bindings with demonstration in Emacs, which we use
as a base user interface. This is a brand new direction of intelligent
user interface research and also a novel application of recommender
systems. To the best of our knowledge, this is the world’s first intel-
ligent user interface that heavily exploits key bindings of physical
keyboards and the world’s first recommender system for recom-
mending key bindings. We empirically show the effectiveness of
our recommender system and briefly discuss the applicability of
this recommender system to other software systems.

CCS CONCEPTS
• Information systems→Personalization;Recommender sys-
tems; • Human-centered computing→ Text input; • Software
and its engineering → Software maintenance tools.

KEYWORDS
Intelligent User Interface, Recommender System, Key Binding, Phys-
ical Keyboard

ACM Reference Format:
Shudan Zhong and Hong Xu. 2019. Intelligently Recommending Key Bind-
ings on Physical Keyboards with Demonstrations in Emacs. In 24th In-
ternational Conference on Intelligent User Interfaces (IUI ’19), March 17–
20, 2019, Marina del Rey, CA, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3301275.3302272

∗Corresponding author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6272-6/19/03.
https://doi.org/10.1145/3301275.3302272

1 INTRODUCTION
Physical keyboards have been peripheral input devices to electronic
computers since early 1970s [2] and become ubiquitous during the
past few decades. Despite the dramatic advancements of touch-
screen keyboards during the past two decades [20, 21], physical
keyboards remain and continue to be essential for productivity
in many professional areas, such as software programming, pro-
fessional game playing, and document processing. Even among
academics, physical keyboards have long been and continue to be
active research topics [7, 14, 15, 19, 22]. However, to the best of our
knowledge, research on applying recommender systems to tasks
related to physical keyboards is still missing.

One fundamental way to interact with a computer using physical
keyboards is via key bindings. A key binding is one or many key
strokes that are bound to trigger one particular functionality in a
software system. Key bindings in modern computer systems can be
as short as one key stroke, such as Ctrl + c (copy to clipboard) and
Ctrl + v (paste from clipboard) in Microsoft Windows, but can
also be as long as tens of key strokes, such as cheat codes in many
computer games. Key bindings play essential roles in many user
interfaces. For computer programmers and article writers, prop-
erly set key bindings can boost their productivity. For professional
gamers, key bindings directly affect their enjoyment of games and
competitiveness in electronic sports. Therefore, it is imperative to
create key bindings intelligently.

One famous software system with a user interface that exploits
the use of key bindings to an extreme extent, if not the most, is
Emacs. It was first developed in 1970s and has become a classi-
cal family of computer programs for writing programming code
since then [5]. It is famous among software developers for its ultra-
high extensibility and customizability—i.e., personalization in the
terminology of recommender systems. Indeed, our scanning of
source code shows that, a default installation of version 26.1 of
GNU Emacs [18], the most popular member of the Emacs family
today, has over 9,000 customization options. (For simplicity, we will
refer to “GNU Emacs” simply as “Emacs” throughout the rest of
the paper.) This high customizability of Emacs makes it a desirable
base for developing an intelligent user interface that focuses on
recommending key bindings.

A huge fraction of Emacs’ customizability comes from its fully
customizable mapping from Lisp functions—Emacs’ internal repre-
sentations of its functionalities—to key bindings. In Emacs, users
can define their own Lisp functions just like in an usual program-
ming setting: They have control flow and access to APIs provided by
Emacs. Due to this high customizability of user-defined Lisp func-
tions, powerful users and extension developers of Emacs generally
customize key bindings frequently, especially for Lisp functions that

12

https://doi.org/10.1145/3301275.3302272
https://doi.org/10.1145/3301275.3302272

IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA Shudan Zhong and Hong Xu

they defined. Furthermore, Emacs also allows much more sophis-
ticated individual key bindings than most other software systems
and perhaps all text/programming code editor programs. Therefore,
algorithms for recommending key bindings on Emacs’ key binding
system are also likely to be applicable to most other software sys-
tems with user interfaces. For these reasons, we choose Emacs as
the base user interface to develop and demonstrate a recommender
system for intelligently recommending key bindings.

In this paper, we develop a recommender system for intelligently
recommending key bindings with demonstration in Emacs, which
we use as a base user interface.We refer to our recommender system
as the Emacs Key Binding Recommender System (EKBRS). This is
a brand new direction of intelligent user interface research and
also a novel application of recommender systems. To the best of
our knowledge, this is the world’s first intelligent user interface
that heavily exploits key bindings of physical keyboards and the
world’s first recommender system for recommending key bindings.
The paper is organized as follows. In Section 2, we summarize the
structure of key bindings and common approaches for (manually)
creating key bindings in Emacs. In Section 3, we describe the details
of EKBRS. In Section 4, we empirically evaluate EKBRS. Finally, in
Section 6, we conclude our work and briefly discuss the applicability
of this recommender system to other software systems.

2 STRUCTURE OF KEY BINDINGS IN EMACS
While Emacs is well known as a text/programming code editor
program, its internal is designed as a Lisp machine in which all
functionalities are formulated by Lisp code. A Lisp function consists
of a group of Lisp code that accomplishes a defined goal and its
name is by convention a sequence of English words separated by
dashes. In Emacs, a key binding is a sequence of key strokes that
invokes a specific Lisp function. For example, a user can use the
key binding Ctrl + s to interactively invoke isearch-forward,
a Lisp function that searches the current buffer (contents in the
currently active window).

Emacs has a more sophisticated key binding system than those
of most (and perhaps all) other editor programs. Unlike most other
text editors, Emacs allows key bindings that consist of multiple key
strokes. A key stroke is the action of pushing a normal key with or
without modifier keys and then releasing them. The prefix and the
suffix of a key binding with n key strokes is the sequence of its first
n − 1 key strokes and its last key stroke, respectively. For example,
Ctrl + x s is a key binding meaning “pushing Ctrl + x first
and releasing them, then pushing s and releasing it.” It has two
key strokes, in which Ctrl + x is the first key stroke and s is
the second key stroke. Its prefix is Ctrl + x and its suffix is s .
Ctrl is a modifier key and x and s are normal keys.
To better understand key bindings in Emacs for developing a

recommender system, here, we observe and summarize common
approaches in Emacs (and its third-party extensions) for manually
creating key bindings for a given Lisp function. Combinations of
the approaches listed below are also commonly used. All examples
are taken from default key bindings.

(1) Use a key binding that consists of the first letter of an
English word in the name of the Lisp function. For exam-
ple, next-line/previous-line is bound to Ctrl + n / Ctrl

+ p , where n / p is the first letter of the English word
“next”/“previous.”

(2) Use a key binding that consists of a key stroke directly related
to the meaning of the Lisp function. For example, split-
window-below is bound to Ctrl + x 2 , where 2 relates
to the meaning of “splitting the window into two halves.”

(3) Use a key binding with a prefix that is conventionally used
for a certain category of Lisp functions. For example, Ctrl

+ h is a common prefix for help seeking Lisp functions:
describe-variable, a function that displays the descrip-
tion of a variable, is bound to Ctrl + h v ; describe-key,
a function that displays the description of a key binding, is
bound to Ctrl + h k .

(4) Use a key binding that locates closely (on the keyboard) to the
key binding of a related Lisp function in terms of function-
ality. This approach is usually applied on non-alphabetical
normal keys. For example, split-window-right is bound
to Ctrl + x 3 . This is geometrically close to Ctrl + x

2 , which binds split-window-below, a Lisp function that
relates split-window-right in terms of functionality.

(5) To avoid conflicting with existing key bindings, in addition
to using one or combinations of the approaches listed above,
also add/change modifier keys. For example, save-buffer
is bound to Ctrl + x Ctrl + s , since Ctrl + x s already
binds same-some-buffers.

3 RECOMMEND KEY BINDINGS IN EMACS
In this section, we propose a recommender system for recommend-
ing key bindings in Emacs. This recommender system recommends
a list of key bindings for a given Lisp function based on the exist-
ing key binding database, which contains a set of Lisp functions
and their associated key bindings. These existing key bindings can
consist of both default (i.e., set by vanilla Emacs and its extensions)
and user-customized key bindings. Therefore, how personalized
the recommended key bindings are depends on the amount of key
bindings that the Emacs user has customized.

EKBRS consists of two modules: The word-suffix (WS) and
function-function (FF) modules. The WS module scores normal keys
in suffices based on the relationship between English words in Lisp
functions’ names and normal keys in suffices. This is due to Obser-
vations (1) and (2) listed in Section 2. Based on similarities between
Lisp functions, the FF module scores prefixes (due to Observations
(3) listed in Section 2) and non-alphabetical normal keys in suffices
(due to Observations (4) listed in Section 2).

We now discuss the two modules of EKBRS in details.

3.1 The word-suffix Module
This module scores normal keys in suffices based on the relationship
between English words in Lisp function names and normal keys in
suffices. This relationship is important because these normal keys
are usually chosen based on the English words in Lisp functions’
names, as per Observation (1) in Section 2. This module consists
of two submodules: The prior-word-suffix and posterior-word-suffix
submodules. The prior-word-suffix submodule is based on priorly
known relationship and the posterior-word-suffix submodule is
based on this relationship in the existing key binding database.

13

Intelligently Recommending Key Bindings on Physical Keyboards IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA

3.1.1 The prior-word-suffix Submodule. This submodule is based
on priorly known relationship between normal keys and English
words in Lisp functions. There are two types of such relationship:
Spelling and meaning. A normal key has a spelling relationship to
an English word if the normal key is the first letter of the English
word (e.g., the example in Observation (1)). A normal key has a
meaning relationship to an English word if the English word is the
spelling name of the normal key (e.g., the example in Observation
(2)). For a Lisp function, this submodule recommends a normal key
to be used in the suffix iff the normal key has a spelling or meaning
relationship with at least one English word in that Lisp function.
All recommended normal keys in suffices have the same score 1.

3.1.2 The posterior-word-suffix Submodule. This submodule is
based on the relationship between English words in Lisp functions’
names and suffices in the existing key binding database. In this
submodule, we first discover this relationship using the existing
key binding database and then recommend normal keys in suffices
according to this relationship.

We first describe how this submodule discovers the relationship
between English words and normal keys in suffices. This relation-
ship is discovered via the correlation between the presence of each
English word in Lisp functions and the presence of each normal
key in suffices. Formally, for each existing Lisp function ℓ and its
key binding b in the existing key binding database D, we let π ℓ,b

w
and π ℓ,b

k denote the presences of the English wordw in ℓ (denoted
byw ∈ ℓ) and the normal key k in the suffix of b (denoted by k ∈ b),
respectively. π ℓ,b

w = 1 if w ∈ ℓ and otherwise π ℓ,b
w = 0; π ℓ,b

k = 1 if
k ∈ b and otherwise π ℓ,b

k = 0. This relationship is defined as the cor-

relation r (w,k) between the two vectors πw =
〈
π ℓ,b
w | (ℓ,b) ∈ D

〉
and πk =

〈
π ℓ,b
k | (ℓ,b) ∈ D

〉
. Here, we characterize the correlation

using Pearson’s correlation coefficient [12], a statistical parameter
that is commonly used in collaborative filtering systems [8].

From the correlation between every pair of an English word
and a normal key, we construct the word-key graph, a bipartite
undirected edge-weighted graph that characterizes the relationship
between English words and normal keys in suffices. Each node in
the first partition of this graph represents an English word and each
node in the second partition represents a normal key. We refer to
these two types of nodes as word nodes and key nodes, respectively.
A word node w is connected to a key node k iff there exists at
least one (ℓ,b) ∈ D such that w ∈ ℓ, k ∈ b and w is the most
correlated English word to k among all English words in ℓ, i.e.,
w = argmaxw ′∈ℓ r (w

′,k). The weight of this edge is the number of
such (ℓ,b) ∈ D. An English wordw and a normal key k are related
if their corresponding nodes in the word-key graph are connected
by an edge, and the larger the weight of this edge is, the more
stronglyw and k are related.

For a given Lisp function ℓ, this submodule considers the sub-
graph Gℓ of the word-key graph induced by all English words in
the name of this Lisp function and their neighboring normal keys.
It scores these normal keys using the sum of weights of all edges
incident to them in Gℓ .

3.2 The function-function Module
Based on similarities between Lisp functions, this module scores pre-
fixes and non-alphabetical normal keys in suffices. For a given Lisp
function ℓ, we compute its similarity s(ℓ, ℓ′) between ℓ and each
Lisp function ℓ′ in the existing key binding database. We then score
all ℓ′ using its similarity to ℓ, and prefixes and non-alphabetical
normal keys are thereafter scored based on their presences in key
bindings of all ℓ′.

3.2.1 Similarity. We use two different similarity measures. The
first similarity measure is the Sørensen-Dice coefficient, which was
first proposed in [3] and [17] and is now also commonly used in
content-based filtering [6]. It measures the density of overlapped
English words in two Lisp function names, i.e., s(ℓ, ℓ′) = 2· |ℓ∩ℓ′ |

|ℓ |+ |ℓ′ |
.

This similarity measure, unfortunately, by its nature cannot cap-
ture the semantics of English words. For this reason, we introduce
a second similarity measure that makes use of word embedding,
which we refer to as the word embedding measure. Word embedding
is a language model that represents the semantic of each word
using a Euclidean vector and is a well established concept in the
field of natural language processing [9, 10, 13]. In recent years,
word embeddings have also started being applied in recommender
systems [11, 16, 23].

For the word embedding measure, we compute the similarity
between two Lisp functions as follows. We represent each Lisp
function using a vector equal to the sum of all vectors corresponding
to the English words in the name, and optionally the documented
summary and description, of the Lisp function. The similarity is
the cosine of the angle between the vectors representing these two
Lisp functions, commonly known as cosine similarity.

3.2.2 Scoring. The score of each prefix p (or non-alphabetical nor-
mal key k in suffix) is maxℓ′∈L s(ℓ, ℓ′), where L is the set of all Lisp
functions that have p (or k) in their key bindings. Non-alphabetical
normal keys that locate next to k have the same score as k (due to
Observation (4) in Section 2).

3.3 Scoring Key Bindings
After the two modules score prefixes and normal keys in suffices,
we combine these scores to generate scores for key bindings. To
combine the scores from the two modules, we first score all nor-
mal keys in suffices as the weighted sum of their scores in the
prior-word-suffix and posterior-word-suffix submodules and the
FF module, and then score key bindings by combining scores of
prefixes and normal keys in suffices.

To combine the prefixes and normal keys in suffices scored by
the PW and FF modules, we first (a) rescale the score of each prefix
and normal key in suffix by dividing it by the sum of the scores of all
prefixes and normal keys in suffix, respectively, then (b) score key
bindings as the sum of the scores of their prefixes and normal keys
in their suffices, and finally (c) recommend key bindings with the
highest scores. In step (c), we always recommend a key binding with
no modifier keys in its suffix unless this key binding conflicts with
an existing key binding (due to Observation (5) in Section 2). In this
case, after sorting combinations of modifier keys descendingly with
respect to their frequencies in the existing key binding database,
we try adding each of them to its suffix until the conflict is resolved.

14

IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA Shudan Zhong and Hong Xu

1 2 3 4 5
n

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge
 o

f R
ec

ov
er

y

0.62

0.79

0.89

0.93
0.95

0.64

0.80

0.88

0.92
0.95

0.63

0.82

0.88
0.90 0.91

0.63

0.76

0.83

0.89
0.92

dice
embedding-n
embedding-s
embedding-sd

(a) Prefixes

1 2 3 4 5
n

0.0

0.2

0.4

0.6

0.8

Pe
rc

en
ta

ge
 o

f R
ec

ov
er

y

0.21

0.38

0.48 0.49 0.49

0.22

0.34

0.39
0.43 0.44

0.29

0.48

0.62
0.65

0.67

prior-word-suffix
posterior-word-suffix
combined

(b) Normal keys in suffices

1 2 3 4 5
n

0.0

0.1

0.2

0.3

0.4

0.5

Pe
rc

en
ta

ge
 o

f R
ec

ov
er

y

0.18

0.31

0.37

0.41
0.43

0.20

0.27

0.33
0.36

0.37

0.22

0.28

0.33
0.35 0.35

0.19

0.25

0.29
0.32 0.33

dice
embedding-n
embedding-s
embedding-sd

(c) Key bindings

Figure 1: Experimental results on recommended (a) prefixes, (b) nor-
mal keys in suffices, and (c) key bindings. The x-axes indicate the
number of generated recommendations, and the y-axes indicate the
percentage of recovery of the recommended items.

4 EMPIRICAL EVALUATION
We empirically evaluated EKBRS on the default global key binding
database in vanilla Emacs version 26.1. We removed all key bindings
consisting normal keys outside the main area of a qwerty keyboard
(except for arrow keys). After this preprocessing, this key binding
database consists of 391 key bindings in total. We used a leave-one-
out strategy to evaluate EKBRS. In each round, one key binding b
and its corresponding Lisp function ℓ were temporarily removed
from the key binding database. Then we recommended n key bind-
ings/prefixes/normal keys in suffices for ℓ based on the rest of the
key binding database. If b’s prefix/normal key in b’s suffix is among

Table 1: Comparison between EKBRS (with n = 1 and the dicemea-
sure) and the baseline algorithm.

Algorithm Ours Baseline withm =

1 2 3 4 5 6 7

Percentage of Recovery 0.184 0.128 0.128 0.110 0.115 0.105 0.115 0.107

these n recommendations, then we say that b’s prefix/normal key
in b’s suffix is recovered. Since modifier keys in suffices are mostly
merely used for avoiding conflicts with existing key bindings (and
therefore in general do not affect the quality of a key binding), we
say that b is recovered so long as both b’s prefix and normal key
in its suffix are recovered. The higher percentage of recovery, the
more effective EKBRS roughly is (under the assumption that default
key bindings are optimally designed).

In our experiments, we set the coefficients to be 2, 1, and 1 for
weighted summing the scores of normal keys in suffices generated
by the prior-word-suffix submodule, the posterior-word-suffix sub-
module, and the function-funcion module, respectively. We ranged
n from 1 to 5. For the measure of similarity in the FF module,
we experimented on both measures (coded dice and embedding)
described in Section 3.2.1. For the word embedding measure, we
used the 300-dimensional word vectors pre-trained by GloVe on
Wikipedia 2014 and Gigaword 5 [1, 13]. We represented each Lisp
function using the sum of all vectors corresponding to the Eng-
lish words in its name (embedding-n), its documented summary
(embedding-s), as well as its documented summary and description
(embedding-sd) after removing all stopwords in them.

We first evaluate recommended prefixes. Figure 1a shows our
experimental results. As n increases to 5, the percentage of recovery
becomes greater than 0.9. This means that, for approximately 90% of
Lisp functions in the existing key binding database, the key binding
configured in the vanilla Emacs was among the first 5 recommen-
dations by EKBRS. In addition, none of the four similarity measures
were dominantly advantageous, with embedding-sd being slightly
weaker than the other three similarity measures. The reason might
be that English words in a Lisp function’s name and summary are
more focused on its core functionality, while its description is more
diluted by less relevant English words, such as references to other
Lisp functions.

We now evaluate recommended normal keys in suffices. We
compared our approach (combined) with those that apply either the
prior-word-suffix or posterior-word-suffix submodule as baselines.
Figure 1b shows our experimental results: A weighted sum of scores
of normal keys in suffices generated by the prior-word-suffix and
posterior-word-suffix submodules was more effective than each of
these individual scores. We do not list the scores of normal keys in
suffices generated by the FF module, since non-alphabetical normal
keys are rare in the existing key binding database.

We now evaluate recommended key bindings. Figure 1c shows
our experimental results. It shows that the dice measure was more
effective than the other three measures when n ≥ 2, while the
embedding-s measure was most effective when n = 1, i.e., when
only one recommendation was requested.

To demonstrate the effectiveness of EKBRS, we also compared
it with a baseline algorithm, which always recommends one key

15

Intelligently Recommending Key Bindings on Physical Keyboards IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA

binding. The baseline algorithm uses anm-nearest neighbors1 strat-
egy. It works as follows. For a given Lisp function ℓ, it finds its
m-nearest neighbors Lm using the dice measure. It then counts
the number of key strokes in the key bindings of each Lisp function
in Lm and chooses the number of key strokes in the key binding
of ℓ as the one with the largest count. For the key stroke in each
position of the to-be-determined key binding, it chooses the one
that appears most in the same position in the key bindings of Lisp
functions in Lm . Table 1 compares EKBRS to the baseline algorithm
with differentm’s. It shows that our algorithm was more effective
than this baseline algorithm in terms of percentage of recovery.

5 DISCUSSION
While we have developed and demonstrated our recommender sys-
tem, EKBRS, for recommending key bindings in Emacs, the vision of
this paper goes far beyond it: We intend to build a framework of rec-
ommender system that can intelligently recommend key bindings
for a variety of systems with user interfaces. As stated in Section 1,
we chose Emacs as the base system to develop and demonstrate
such a recommender system simply due to its sophistication: A
recommender system for recommending key bindings that works
on Emacs is likely adaptable to other common software systems
with user interfaces that are less sophisticated in terms of key bind-
ings. In this section, we discuss the applicability of EKBRS to a few
classes of common software systems.

5.1 Common Text/Programming Code Editors
The text/programming code editors used the most by software
engineers usually have key binding systems that are much simpler
than that of Emacs. For example, although popular programming
code editors such as Atom2, Sublime Text3, and Notepad++4 are also
powerful and customizable, the functionalities that are accessible
to users via key binding customization are far more limited than
those in Emacs. However, due to their similarities to Emacs in
terms of their purpose (editing text and/or programming code),
many techniques used in EKBRS are still applicable after proper
adaptation.

For example, similar to Emacs, Atom and Sublime Text also map
key bindings to functions of their respective internal programming
languages, while they have much fewer available pre-defined key
bindings and functions than Emacs, and their key binding are also
much less disciplined. For these systems, we can adapt EKBRS
by weighting down prefixes when scoring due to their simpler
sequences of key strokes in key bindings.

However, users on these systems are much less likely to cus-
tomize key bindings and the usefulness of this adapted recom-
mender system is not as valuable as the one for Emacs. Therefore,
instead of focusing on recommending key bindings directly to users,
we can use this adapted system to recommend default key bind-
ings in editors and their plugins to their respective developers. In
this case, we can even further adapt our system to recommend
key bindings for multiple functions all at once by adding a conflict
1This is more commonly known as “k -nearest neighbors.” Here, we usem instead of
k to avoid notational confusion.
2https://atom.io
3https://www.sublimetext.com/
4https://notepad-plus-plus.org/

detection component: The same sequence of key strokes should
not be recommended to map two different functions. This may
be done by integrating a recommender system method such as
constraint-based filtering [4].

5.2 Computer Games
Computer games such as WarCraft5 and StarCraft6 often require
professional gamers to operate fast. Therefore, these games usually
provide many default key bindings and professional gamers also
need to frequently (re-)customize key bindings.

The structure of key bindings and users’ preferences thereto
in these computer games are substantially different from those in
text/programming code editors, but we can still adapt EKBRS for
them. First, professional gamers prefer shorter sequences of key
strokes and disfavor modifier keys much more than computer pro-
grammers. We can adapt EKBRS by weighting down key bindings
with long sequences of key strokes and key strokes with modifier
keys.

Secondly, professional gamers prefer sequences of key strokes
with related functionalities to be close to each other. For example,
keys that control the moving directions of a game character are pre-
ferred to be close to each other, since they often need to be triggered
chronically closely to each other. We can adapt EKBRS by alter-
ing the function-function module to measure similarities between
functionalities that are accessible from key bindings, and replace
prefixes of sequences of key strokes with a metric of locations on
the physical keyboard.

Thirdly, professional gamers also use keys outside their physical
keyboards, such as on their mice—for instance, an average profes-
sional gaming mouse can have as many as 12 additional physical
keys7. We can trivially adapt EKBRS to consider additional physical
keys. However, in some systems, these additional keys are made
accessible by being configured to be equivalent to some key strokes
on the physical keyboard. In this case, we can add a conflict detec-
tion component to EKBRS and adapt it to also recommend proper
configuration to minimize the harm caused by conflict avoidance.

6 CONCLUSION
In this paper, we developed a recommender system, named EKBRS,
that is applied on tasks related to physical keyboards. It recommends
key bindings for Lisp functions in Emacs, a novel application of
recommender systems. To the best of our knowledge, this is the
first publicly documented recommender system for tasks related to
physical keyboards (and more specifically key bindings). This is also
the first intelligent user interface that heavily exploits key bindings
of physical keyboards. Based on our observations on the structure
of default key bindings in Emacs, our recommender system divides
the task of recommending key bindings into scoring prefixes and
normal keys in suffices individually, and then combines them. We
empirically evaluated the effectiveness of EKBRS and showed that
it is more effective than some of its simpler variants as well as a
baseline algorithm based onm-nearest neighbors.

5https://worldofwarcraft.com
6https://starcraft.com
7https://www.corsair.com/us/en/Color/scimitar-pro-config/p/CH-9304011-NA

16

https://atom.io
https://www.sublimetext.com/
https://notepad-plus-plus.org/
https://worldofwarcraft.com
https://starcraft.com
https://www.corsair.com/us/en/Color/scimitar-pro-config/p/CH-9304011-NA

IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA Shudan Zhong and Hong Xu

REFERENCES
[1] 2018. https://nlp.stanford.edu/projects/glove/. Accessed: 2018-09-22.
[2] Datapoint Corporation 1970. Datapoint 3300 / Maintanance. Datapoint Corpora-

tion.
[3] Lee R. Dice. 1945. Measures of the Amount of Ecologic Association Between

Species. Ecology 26, 3 (1945), 297–302. https://doi.org/10.2307/1932409
[4] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus Zanker.

2015. Constraint-Based Recommender Systems. In Recommender Systems Hand-
book. Springer, 161–190. https://doi.org/10.1007/978-1-4899-7637-6_5

[5] Bernard S. Greenberg. 1996. Multics Emacs: The History, Design and Implementa-
tion. Technical Report. http://www.multicians.org/mepap.html

[6] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich.
2010. Recommender Systems: An Introduction. Cambridge University Press.

[7] Hwan Kim, Yea-kyung Row, and Geehyuk Lee. 2012. Back Keyboard: A Physical
Keyboard on Backside of Mobile Phone Using Qwerty. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. 1583–1588. https:
//doi.org/10.1145/2212776.2223676

[8] Yehuda Koren and Robert Bell. 2015. Advances in Collaborative Filtering. In
Recommender Systems Handbook. Springer, 77–118. https://doi.org/10.1007/
978-1-4899-7637-6_3

[9] Yang Li and Tao Yang. 2018. Word Embedding for Understanding Natural
Language: A Survey. In Guide to Big Data Applications. Springer, 83–104.
https://doi.org/10.1007/978-3-319-53817-4_4

[10] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed Representations of Words and Phrases and Their Compositionality.
In Proceedings of the International Conference on Neural Information Processing
Systems. 3111–3119.

[11] Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, and Pasquale Lops. 2016.
Learning Word Embeddings from Wikipedia for Content-Based Recommender
Systems. In Proceedings of the European Conference on Information Retrieval. 729–
734. https://doi.org/10.1007/978-3-319-30671-1_60

[12] Karl Pearson. 1895. Notes on Regression and Inheritance in the Case of Two
Parents. Proceedings of the Royal Society of London LVIII (1895), 240–242.

[13] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing. 1532–1543.

[14] JoseMiguel R. Salvo, Christian Jay B. Raagas, Maria Tatjana ClaudeeneM.Medina,
and Alyssa Jean A. Portus. 2016. Ergonomic Keyboard Layout Designed for
the Filipino Language. In Proceedings of the AHFE International Conference on
Physical Ergonomics and Human Factors. Springer, 407–416. https://doi.org/10.
1007/978-3-319-41694-6_41

[15] Sidney J. Segalowitz and Roger E. Graves. 1990. Suitability of the IBM XT, AT,
and PS/2 Keyboard, Mouse, and Game Port as Response Devices in Reaction Time
Paradigms. Behavior Research Methods, Instruments, & Computers 22, 3 (1990),
283–289. https://doi.org/10.3758/BF03209817

[16] Donghyuk Shin, Suleyman Cetintas, Kuang-Chih Lee, and Inderjit S. Dhillon.
2015. Tumblr Blog Recommendation with Boosted Inductive Matrix Completion.
In Proceedings of the ACM Conference on Information and Knowledge Management.
https://doi.org/10.1145/2806416.2806578

[17] Thorvald Julius Sørensen. 1948. A Method of Establishing Groups of Equal
Amplitude in Plant Sociology Based on Similarity of Species and Its Application
to Analyses of the Vegetation on Danish Commons. Biologiske skrifter 5 (1948),
1–34.

[18] Richard Stallman et al. 2017. GNU Emacs Manual (17th ed.). Free Software
Foundation.

[19] James Walker, Bochao Li, Keith Vertanen, and Scott Kuhl. 2017. Efficient Typing
on a Visually Occluded Physical Keyboard. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. 5457–5461. https://doi.org/10.1145/
3025453.3025783

[20] Shumin Zhai. 2017. Modern Touchscreen Keyboards As Intelligent User Interfaces:
A Research Review. In Proceedings of the International Conference on Intelligent
User Interfaces. 1–2. https://doi.org/10.1145/3025171.3026367

[21] Shumin Zhai, Per Ola Kristensson, Caroline Appert, Tue Haste Andersen, and
Xiang Cao. 2012. Foundational Issues in Touch-Surface Stroke Gesture Design:
An Integrative Review. Now Foundations and Trends. https://doi.org/10.1561/
1100000012

[22] Haimo Zhang and Yang Li. 2014. GestKeyboard: Enabling Gesture-based Inter-
action on Ordinary Physical Keyboard. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. 1675–1684. https://doi.org/10.1145/
2556288.2557362

[23] Lei Zheng, Bokai Cao, Vahid Noroozi, Philip S. Yu, and Nianzu Ma. 2017. Hi-
erarchical Collaborative Embedding for Context-Aware Recommendations. In
Proceedings of the IEEE International Conference on Big Data. 867–876. https:
//doi.org/10.1109/BigData.2017.8258002

17

https://nlp.stanford.edu/projects/glove/
https://doi.org/10.2307/1932409
https://doi.org/10.1007/978-1-4899-7637-6_5
http://www.multicians.org/mepap.html
https://doi.org/10.1145/2212776.2223676
https://doi.org/10.1145/2212776.2223676
https://doi.org/10.1007/978-1-4899-7637-6_3
https://doi.org/10.1007/978-1-4899-7637-6_3
https://doi.org/10.1007/978-3-319-53817-4_4
https://doi.org/10.1007/978-3-319-30671-1_60
https://doi.org/10.1007/978-3-319-41694-6_41
https://doi.org/10.1007/978-3-319-41694-6_41
https://doi.org/10.3758/BF03209817
https://doi.org/10.1145/2806416.2806578
https://doi.org/10.1145/3025453.3025783
https://doi.org/10.1145/3025453.3025783
https://doi.org/10.1145/3025171.3026367
https://doi.org/10.1561/1100000012
https://doi.org/10.1561/1100000012
https://doi.org/10.1145/2556288.2557362
https://doi.org/10.1145/2556288.2557362
https://doi.org/10.1109/BigData.2017.8258002
https://doi.org/10.1109/BigData.2017.8258002

	Abstract
	1 Introduction
	2 Structure of Key Bindings in Emacs
	3 Recommend Key Bindings in Emacs
	3.1 The word-suffix Module
	3.2 The function-function Module
	3.3 Scoring Key Bindings

	4 Empirical Evaluation
	5 Discussion
	5.1 Common Text/Programming Code Editors
	5.2 Computer Games

	6 Conclusion
	References

