Decision Tree Learning-Inspired Dynamic Variable Ordering for the Weighted CSP

Hong Xu Kexuan Sun Sven Koenig T. K. Satish Kumar hongx@usc.edu, kexuansu@usc.edu, skoenig@usc.edu, tkskwork@gmail.com May, 2020

University of Southern California the 13th International Symposium on Combinatorial Search (SoCS 2020)

- The Weighted Constraint Satisfaction Problem (WCSP)
- Branch-and-Bound Search and Dynamic Variable Ordering (DVO)
- Our Decision-Tree Learning Inspired Dynamic Variable Ordering
- Experimental Evaluation
- Conclusion

Executive Summary

- Branch-and-bound search has been the state of the art paradigm for solving the WCSP.
- Dynamic variable ordering (DVO) is a critical component of branch-and-bound search.
- Our newly proposed DVO algorithms, inspired by decision tree learning, have shown superior performance in our preliminary experiments.

• The Weighted Constraint Satisfaction Problem (WCSP)

- Branch-and-Bound Search and Dynamic Variable Ordering (DVO)
- Our Decision-Tree Learning Inspired Dynamic Variable Ordering
- Experimental Evaluation
- Conclusion

Many real-world problems can be solved using the WCSP:

- RNA motif localization (Zytnicki et al. 2008)
- Communication through noisy channels using Error Correcting Codes in Information Theory (Yedidia et al. 2003)
- Medical and mechanical diagnostics (Milho et al. 2000; Muscettola et al. 1998)
- Energy minimization in Computer Vision (Kolmogorov 2005)

• • • •

Weighted Constraint Satisfaction Problem (WCSP)

- N variables $\underline{x} = \{X_1, X_2, \dots, X_N\}.$
- Each variable X_i has a discrete-valued domain D_i.
- *M* weighted constraints $\{E_{s_1}, E_{s_2}, \ldots, E_{s_M}\}$.
- Each constraint E_s specifies the weight for each combination of assignments of values to a subset *s* of the variables.
- Find an optimal assignment of values to these variables so as to minimize the total weight: $E(\underline{x}) = \sum_{i=1}^{M} E_{s_i}(\underline{x}_{s_i})$.
- Known to be NP-hard.

WCSP Example on Boolean Variables

 $E(X_1, X_2, X_3) = E_1(X_1) + E_2(X_2) + E_3(X_3) + E_{12}(X_1, X_2) + E_{13}(X_1, X_3) + E_{23}(X_2, X_3)$

WCSP Example: Evaluate the Assignment $X_1 = 0, X_2 = 0, X_3 = 1$

 $E(X_1 = 0, X_2 = 0, X_3 = 1) = 0.7 + 0.3 + 1.0 + 0.5 + 1.3 + 0.9 = 4.7$ (This is not an optimal solution.)

WCSP Example: Evaluate the Assignment $X_1 = 1, X_2 = 0, X_3 = 0$

 $E(X_1 = 1, X_2 = 0, X_3 = 0) = 0.2 + 0.3 + 0.1 + 0.7 + 0.6 + 0.7 = 2.6$ This is an optimal solution. Using brute force, it requires exponential time

7

- The Weighted Constraint Satisfaction Problem (WCSP)
- Branch-and-Bound Search and Dynamic Variable Ordering (DVO)
- Our Decision-Tree Learning Inspired Dynamic Variable Ordering
- Experimental Evaluation
- Conclusion

Branch-and-Bound Search

Search by assigning value to one variable at a time until the optimal solution is found. Backtrack when needed. Each search node consists of

- an assignment of value to a subset of variables and the total weight of constraints between all assigned variables w_a
- the total weight of currently best solution w^{\dagger}

At each search node:

- 1. Choose a variable X_k assign a value x_k to it. (Dynamic Variable Ordering)
- 2. Enforce local consistency.
- 3. Compute wa.
- 4. If all variables have been assigned and $w_a < w^{\dagger}$, then $w^{\dagger} := w_a$ and backtrack.
- 5. If $w_a \ge w^{\dagger}$, backtrack.
- 6. Go to 1 (next search node).

Dynamic Variable Ordering (DVO): Example of Two Search Orders

A 3-variable WCSP instance:

(b) Constraint C_2

$X_1 \rightarrow X_2 \rightarrow X_3$, first 0 the	en 1			
$X_1 = 0$	$W_a=0, W^\dagger=\infty$			
$X_1 = 0, X_2 = 0$	$w_a = 400, w^{\dagger} = \infty$			
$X_1 = 0, X_2 = 0, X_3 = 0$	$w_a = 401, w^{\dagger} = 401$			
$X_1 = 0, X_2 = 0, X_3 = 1$	$w_a = 402, w^{\dagger} = 401$			
$X_1 = 0, X_2 = 1$	$w_a = 300, w^{\dagger} = 7$			
$X_1 = 0, X_2 = 1, X_3 = 0$	$w_a = 302, w^{\dagger} = 302$			
$X_1 = 1, X_2 = 1, X_3 = 0$	$w_a = 3, w^{\dagger} = 3$			
$X_1 = 1, X_2 = 1, X_3 = 1$	$W_a = 5, W^{\dagger} = 5$			
Found the optimal solution by visiting 14 search				
nodes.				

Dynamic Variable Ordering (DVO): Example of Two Search Orders

A 3-variable WCSP instance:

(b) Constraint C₂

 $X_1 \rightarrow X_2 \rightarrow X_3$, first 1 then 0 $W_{a}=0, W^{\dagger}=\infty$ $X_1 = 1$ $W_{\alpha} = 1$, $W^{\dagger} = \infty$ $X_1 = 1, X_2 = 1$ $X_1 = 1, X_2 = 1, X_3 = 1$ $W_a = 5, W^{\dagger} = 5$ $X_1 = 1, X_2 = 1, X_3 = 0$ $W_a = 3, W^{\dagger} = 3$ $X_1 = 1, X_2 = 0$ $W_{a} = 200, W^{\dagger} = 3$ $w_{a} = 0, w^{\dagger} = 3$ $X_1 = 0$ $X_1 = 0, X_2 = 1$ $W_{a} = 300, W^{\dagger} = 3$ $X_1 = 0, X_2 = 0$ $W_2 = 400, W^{\dagger} = 3$ Found the optimal solution by visiting only 8 search nodes.

- The Weighted Constraint Satisfaction Problem (WCSP)
- Branch-and-Bound Search and Dynamic Variable Ordering (DVO)
- Our Decision-Tree Learning Inspired Dynamic Variable Ordering
- Experimental Evaluation
- Conclusion

Intuition

The measurement can be based on sampling and computing:

- sdr the standard deviation, or
- **rr** the range of weights in the samples (i.e., the maximum weight minus the minimum weight).

- The Weighted Constraint Satisfaction Problem (WCSP)
- Branch-and-Bound Search and Dynamic Variable Ordering (DVO)
- Our Decision-Tree Learning Inspired Dynamic Variable Ordering
- Experimental Evaluation
- Conclusion

- Our algorithms: sdr, rr, sdr-bound, rr-bound
- Competitors
 - deg, dom, suc ((Heras et al. 2006))
 - wdeg, dom/wdeg ((Boussemart et al. 2004))
 - abs ((Michel et al. 2012))
 - ibs ((Refalo 2004))
 - sdr-inv, sdr-inv-bound, rr-inv, rr-inv-bound (Use the reverse of the measurements of sdr, sdr-bound, rr, rr-bound)

- Benchmarks:
 - (Hurley et al. 2016)
 - Limited choice to at most 25 variables and domain size no more than 6.
 - Only 6 instances satisfy the condition.
 - Due to the scarcity of real-world instances, we also created random instances:
 - Create *n* variables,
 - add a constraint between every two variables with probability p = 0.1,
 - randomly assign weights from 1 to 100.
 - We generated 50 such instances for each n ranging from 12 to 20.

Real-World Instances

	Nama	<i>EE</i> 1	:/	L/	a.[~2	<i>al</i>
e	Name		J4	[4	cp	q3	Q4
an	$ \mathcal{X} $	2	28	8	25	25	25
Inst	$ \mathcal{C} $	3	196	32	185	185	185
	D	5	2	6	5	3	4
Algorithm	sdr	31/3 · 10 ⁻⁴ s	833/0.27s	101/0.05s	391,065/4042s	-/48h	-/48h
	sdr-bound	31/3 · 10 ⁻⁴ s	637/1.60s	11/0.04s	6/0.94s	-/48h	-/48h
	rr	31/3 · 10 ⁻⁴ s	801/2.16s	109/0.16s	1100/9.95s	-/48h	-/48h
	rr-bound	31/1 · 10 ⁻² s	665/1.71s	11/0.08s	6/0.97s	-/48h	-/48h
	inv-sdr	31/2 · 10 ⁻⁴ s	5491/1.64s	179/0.05s	429,005/4984s	-/48h	-/48h
	inv-sdr-bound	31/2 · 10 ⁻⁴ s	667/1.80s	8/0.08s	6/0.94s	-/48h	-/48h
	inv-rr	31/2 · 10 ⁻⁴ s	5943/11.97s	429/0.29s	14,677/44.78s	-/48h	-/48h
	inv-rr-bound	31/2 · 10 ⁻⁴ s	659/1.58s	10/0.08s	6/0.94s	-/48h	-/48h
	deg	31/1 · 10 ⁻⁴ s	3225/1.26s	187/0.04s	27,834,834/48,163s	-/48h	-/48h
	dom	31/9 · 10 ⁻⁵ s	8623/5.24s	331/0.08s	-/48h	-/48h	-/48h
	suc	31/9 · 10 ⁻⁵ s	3491/1.72s	606/0.12s	7,718,377/8867s	-/48h	-/48h
	wdeg	31/9 · 10 ^{—5} s	8623/5.37s	203/0.15s	-/48h	-/48h	-/48h
	dom/wdeg	31/9 · 10 ⁻⁵ s	8623/5.29s	331/0.08s	-/48h	-/48h	-/48h
	abs	31/2 · 10 ⁻⁴ s	3173/2.73s	404/0.33s	1,814,781/911s	-/48h	-/48h
	ibs	$31/1 \cdot 10^{-4} s$	7045/4.53s	236/0.08s	-/48h	-/48h	-/48h

- The Weighted Constraint Satisfaction Problem (WCSP)
- Branch-and-Bound Search and Dynamic Variable Ordering (DVO)
- Our Decision-Tree Learning Inspired Dynamic Variable Ordering
- Experimental Evaluation
- Conclusion

Conclusion

- Dynamic Variable Ordering (DVO) algorithms can be critical in WCSP solving.
- We created two new DVO algorithms, inspired by decision tree learning.
- In our preliminary experiments, they have shown more superior performance compared with current state-of-the-art algorithms.
- Future Work: Integrate our new DVO algorithms with state-of-the-art WCSP solvers like toulbar2 (Hurley et al. 2016).

References i

- Frederic Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. "Boosting systematic search by weighting constraints". In: the European Conference on Artificial Intelligence. 2004, pp. 146–150.
- Federico Heras and Javier Larrosa. "Intelligent variable orderings and re-orderings in DAC-based solvers for WCSP". In: Journal of Heuristics 12.4 (2006), pp. 287–306. DOI: 10.1007/s10732-006-8248-z.
- Barry Hurley, Barry O'Sullivan, David Allouche, George Katsirelos, Thomas Schiex, Matthias Zytnicki, and Simon de Givry. "Multi-language evaluation of exact solvers in graphical model discrete optimization". In: *Constraints* 21.3 (2016), pp. 413–434.
- Vladimir Kolmogorov. Primal-dual Algorithm for Convex Markov Random Fields. Tech. rep. MSR-TR-2005-117. Microsoft Research, 2005.
 - Laurent Michel and Pascal Van Hentenryck. "Activity-Based Search for Black-Box Constraint Programming Solvers". In: the International Conference on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming. 2012, pp. 228–243. DOI: 10.1007/978-3-642-29828-8_15.

References ii

- Isabel Milho, Ana Fred, Jorge Albano, Nuno Baptista, and Paulo Sena. "An Auxiliary System for Medical Diagnosis Based on Bayesian Belief Networks". In: Portuguese Conference on Pattern Recognition. 2000.
- Nicola Muscettola, P. Pandurang Nayak, Barney Pell, and Brian C. Williams. "Remote Agent: to boldly go where no {AI} system has gone before". In: *Artificial Intelligence* 103.1–2 (1998), pp. 5–47.
- Philippe Refalo. "Impact-Based Search Strategies for Constraint Programming". In: the International Conference on Principles and Practice of Constraint Programming. 2004, pp. 557–571. DOI: 10.1007/978-3-540-30201-8_41.
- Jonathan S Yedidia, William T Freeman, and Yair Weiss. "Understanding belief propagation and its generalizations". In: *Exploring Artificial Intelligence in the New Millennium* 8 (2003), pp. 236–239.
- Matthias Zytnicki, Christine Gaspin, and Thomas Schiex. "DARN! A Weighted Constraint Solver for RNA Motif Localization". In: *Constraints* 13.1 (2008), pp. 91–109.