Towards Effective Deep Learning for
Constraint Satisfaction Problems

Hong Xu®, Sven Koenig, and T. K. Satish Kumar

University of Southern California, Los Angeles, CA 90089, United States of America
{hongx, skoenig}@usc.edu, tkskworkQgmail.com

Abstract. Many attempts have been made to apply machine learning
techniques to constraint satisfaction problems (CSPs). However, none
of them have made use of the recent advances in deep learning. In this
paper, we apply deep learning to predict the satisfiabilities of CSPs. To
the best of our knowledge, this is the first effective application of deep
learning to CSPs that yields >99.99% prediction accuracy on random
Boolean binary CSPs whose constraint tightnesses or constraint densities
do not determine their satisfiabilities. We use a deep convolutional neural
network on a matrix representation of CSPs. Since it is NP-hard to solve
CSPs, labeled data required for training are in general costly to produce
and are thus scarce. We address this issue using the asymptotic behavior
of generalized Model A, a new random CSP generation model, along
with domain adaptation and data augmentation techniques for CSPs.
We demonstrate the effectiveness of our deep learning techniques using
experiments on random Boolean binary CSPs. While these CSPs are
known to be in P, we use them for a proof of concept.

1 Introduction

A lot of research has been dedicated to applying machine learning techniques
to constraint satisfaction problems (CSPs), such as support vector machines [5],
linear regression [27], decision tree learning [10,12], clustering [15,23], k-nearest
neighbors [21], and so on [16]. However, there are a few drawbacks in these
methods. First, they do not consistently produce extremely high (>99%) pre-
diction accuracies. Secondly, to the best of our knowledge, they critically rely on
handcrafted features. For different distributions of CSPs coming from different
application domains and for different tasks of interest, the optimal features need
to be carefully selected by humans accordingly [16]. How to select good features
thus requires dedicated research [3,4].

Deep learning is a class of machine learning methods based on multi-layer
(deep) neural networks (NNs). Thanks to the advent of “Big Data,” it has sig-
nificantly advanced during the past decade and achieved great success in many
areas, such as computer vision and natural language processing [11]. In these
applications, it consistently produces extremely high prediction accuracies, and
often approaches or even surpasses human-level performance in many human
perception tasks, such as object recognition [8,14] and speech recognition [6].

This copy is the authors’ manuscript copy. The final publication is available at Springer via https://doi.org/10.1007/978-3-319-98334-9_38 .

https://doi.org/10.1007/978-3-319-98334-9_38

Furthermore, it does not rely on handcrafted features. One of the key reasons
for the success of deep learning is the availability of huge amounts of training
data. However, due to the NP-hardness of CSPs, it is costly to label CSPs with
properties such as their satisfiabilities and the best algorithms to solve them.
This has become a roadblock for effective deep learning for CSPs. Indeed, a re-
cent study shows that, without a huge amount of labeled data, a convolutional
NN (cNN) for algorithm selection is ineffective for CSPs [19].}

In this work, we successfully apply deep learning to predict the satisfiabilities
of random Boolean binary CSPs with high prediction accuracies (>99.99%). To
the best of our knowledge, this is the first effective application of deep learning
to random CSPs whose constraint tightnesses or constraint densities do not de-
termine their satisfiabilities. Accurately predicting satisfiabilities might improve
the dynamic variable ordering in a backtracking algorithm for CSPs to increase
the likelihood of choosing a variable that results in a satisfiable subproblem so as
to minimize backtracking. Further adapting our current method to qualitatively
predict the number of solutions, e.g., “0,” “1,” and “>1,” might further improve
the dynamic variable ordering. In addition, transfer learning may be potentially
used to enable effective deep learning for other tasks such as predicting the most
efficient algorithm and its best parameter settings for a given CSP.

In this paper, first, we describe the architecture of our cNN. Then, we address
the issue of the lack of labeled data using the asymptotic behavior of generalized
Model A, a new random CSP generation model, along with domain adaptation
and data augmentation techniques for CSPs. We demonstrate the effectiveness
of our techniques using experiments on random Boolean binary CSPs. While
these CSPs are known to be in P, we use them as a proof of concept.

Preliminaries A CSP is formally defined as a tuple (X,D,C), where X =
{X1,...,X,} is a set of variables, D = {D1,...,D,} is a set of domains cor-
responding to their respective variables, and C = {C4,...,C,,} is a set of con-
straints. Each constraint C; € C is a pair (S(C;), R;), where S(C;) is a subset
of X and R; is a |S(C;)|-ary relation that specifies incompatible and compatible
assignments of values to variables in S(C;). In a table constraint C;, R; is a set
of tuples, each of which indicates the compatibility of an assignment of values to
variables in S(C;). A tuple is compatible if it specifies a compatible assignment
of values to variables, and is otherwise incompatible. We focus on CSPs where
all constraints are table constraints.

The concept of a cNN, a class of deep NN architectures, was initially proposed
for an object recognition problem [18] and has recently achieved great success |8,
14]. It is a multi-layer feedforward NN that takes a multi-dimensional (usually
2-D or 3-D) matrix as input. While ¢NNs are mainly used for classification, they
are also used for regression [24]. A ¢NN has three types of layers: convolutional
layers, pooling layers, and fully connected layers. A convolutional layer performs
a convolution operation. A pooling layer combines the outputs of several nodes

Another related work [9] using a different approach was only publicly available after this paper was accepted,

before which we had no access to it. Nevertheless, it only demonstrated low training and test accuracies in the
experiments when the number of variables in a CSP is non-trivial (>5) and we do not consider it effective (yet).

Inputs CSPs 1024 256

1@256x256 16@128x128 32@64x64 64@32x32 Hidden Neurons Hidden Neurons 1 Output
4“7 m * Dq:q:q:. * !:H:h: *)
IConvolution 3x Convolution 3x3 Convolution 3x3 Full Full Full
Max-Pooling 2x2 ~ Max-Pooling 2x2 ~ Max-Pooling 2x2 Connection Connection Connection

Fig. 1: The architecture of our CSP-cNN.

in the previous layer into a single node in the current layer. A fully connected
layer connects every node in the current layer to every node in the previous layer.

2 Enabling Deep Learning for CSPs

In the context of deep learning for CSPs, each data point is a CSP (instance). If
a data point is labeled, its label is a property of this CSP, such as its satisfiability,
its K-consistency, the best algorithm to solve it, or the amount of time required
to solve it with a specific algorithm. Our ¢NN takes a data point (a CSP) as
input and predicts its label. In order to enable a cNN to take a CSP as input, we
represent a binary CSP using a matrix as follows. Each row/column represents a
variable-value pair (X;, z;). The element in (X;, z;)’s row and (X, z;)’s column
is zero if {X; = x;, X; = x;} is disallowed; otherwise, the element is one. We
refer to this matrix as a CSP matriz.

The rationale behind using a CSP matrix is the observation that it resembles
a 2-D array of pixel values in a gray-scale image. cNNs are known to recognize
patterns in a multi-dimensional array of numbers, such as patterns in an image
in computer vision applications. Our intuition is that many properties of a CSP
depend on the patterns of compatible and incompatible tuples in its constraints.
Therefore, we expect a ¢cNN that takes a CSP matrix as input to be able to
recognize patterns of compatible and incompatible tuples to make its predictions.

Our cNN has the following architecture. Each node in the input layer cor-
responds to an element of the input CSP matrix. It has 4 convolutional layers
with 3-by-3 kernels with stride 1, each of which is followed by a MaxPool layer
with a 2-by-2 kernel with stride 2. We used “same” padding for all convolutional
layers and “valid” padding for all MaxPool layers. Following these layers, there
are 2 fully connected hidden layers. Finally, there is an output layer with a single
node. The node in the output layer uses the sigmoid activation function, and all
other neurons are rectified linear units (ReLUs) [13]. The output layer uses L2
regularization with a coefficient of 0.1, and all other layers use L2 regularization
with a coefficient of 0.01. We refer to this cNN as CSP-cNN as shown in Fig. 1.

2.1 Efficient Massive Training Data Generation

One of the key reasons for the success of deep learning is its power to use huge
amounts of training data, such as hundreds of thousands of data points. However,
since CSPs are NP-hard, it is in general elusive to generate such a huge amount

of labeled data. In this subsection, we develop a new method that efficiently
generates massive amounts of labeled data.

We generalize Model A [26] to create a random binary CSP generation model,
henceforth referred to as generalized Model A. Model A generates a binary CSP
as follows [26]. It independently selects each one of the n(n — 1)/2 pairs of vari-
ables with a given probability p, and, for each selected pair of variables X; and
X, it marks each one of the |D;| - |D;| possible pairs of values as incompatible
independently with a given probability q. Here, p characterizes how many con-
straints exist in a CSP, and ¢ characterizes how restrictive the constraints are.
In generalized Model A, ¢ can vary from constraint to constraint (denoted by
gi; for the pair of variables X; and X;). Model A has an important property: It
always generates CSPs that are unsatisfiable when n — oo if p, ¢ > 0 [2]. Gener-
alized Model A also has this property if p > 0 and VX;, X; € X' : ¢;; > 0, since
it generates CSPs that are more constrained than those generated by Model A
with the same p and ¢ = miny,; x ex qi;-

By making use of this property of generalized Model A, we are able to gener-
ate data points with a low mislabeling rate as follows. To generate a data point
with label UNSATISFIABLE, we simply follow generalized Model A with non-zero p
and g;;’s. To generate a data point with label SATISFIABLE, we use the same pro-
cedure but update the compatibilities of tuples in generated constraints to allow
for a randomly selected solution. We refer to this data generation method as gen-
eralized Model A-based method (GMAM). To avoid data imbalance, we generate
comparable numbers of data points labeled SATISFIABLE and UNSATISFIABLE.
Using this approach, we can efficiently generate huge amounts (such as millions)
of labeled data points for training. The main intuitive reason that we use gen-
eralized Model A instead of Model A is that it leads to a distribution of CSPs
that is more spread out and may be beneficial for training cNNs.

Although generalized Model A always generates CSPs that are unsatisfiable
when n — coif p > 0 and VX;, X; € X : ¢;; > 0, it is still desirable to have some
bounds on the probability of mislabeling a CSP for finite n, which can be used
to guide the choice of p and ¢;;. Among all data points labeled SATISFIABLE,
there are no mislabeled data points since a solution is guaranteed during data
generation. For a data point labeled UNSATISFIABLE, we prove that:

Theorem 1. Consider a data point with binary CSP P = (X, D,C). If it is
generated using GMAM and is labeled UNSATISFIABLE, the probability of it being
mislabeled is no greater than [[y,cx [D(X)I1x, x,ex (1 — Paij)-

Proof. The probability of mislabeling the CSP equals the probability that it has
at least one solution, denoted by P(ng, > 1). Using Markov’s inequality, we
have P(ngo > 1) < E(ngo1), where E(ngo1) is the expected number of solutions
of the CSP. We also have

E(nsol) =E (Z loisa solution) = Z E (1a is a solution) =

a€A(X) acA(X)

Z P(a is a solution) = Z H (1 —pgij) = H [D(X;)| H (1 - pqij),

acA(X) AEA(X) X;,X;€X X;EX X;,X;€X

where A(X) is the set of all assignments of values to variables in X'. Therefore,
the probability that a data point labeled UNSATISFIABLE is mislabeled is no

greater than [Ty, e |D(X)| TLx, x, cxe (1~ paiy)- 0

2.2 Training and Prediction on General CSP Datasets

Applying a deep NN to a small dataset directly may cause overfitting due to the
large number of training parameters. Although we can use GMAM to efficiently
generate huge amounts of training data, training a deep NN on a dataset from a
distribution different from the dataset of interest usually does not lead to good
results, even if the training dataset is huge. To overcome this issue, there are
two common classes of techniques: domain adaptation and data augmentation.

Domain adaptation refers to learning from one source of data and predicting
on a different source of data with a different distribution, due to the scarcity
of available labeled data from the latter source. By using domain adaptation
techniques, a small set of labeled data of interest, assumingly generated from
an arbitrary distribution different from generalized Model A, can still be made
viable. In particular, we can train on a mix of these available data and data
generated using GMAM, and then evaluate on the test data of interest.

Data augmentation refers to transforming data without changing their labels,
known as label-preserving transformations. For example, in object recognition
tasks in computer vision applications, to generate more training data, we can
augment an image by translating or reflecting horizontally without changing its
label [17]. In the context of CSP-cNN, we can augment an input CSP by changing
the order of variables or their domain values, i.e., exchanging their corresponding
rows and columns of the CSP matrix. This does not alter the satisfiabilities of
the CSPs and therefore does not change their labels.

3 Experimental Evaluation

We evaluated CSP-cNN and the relevant methods mentioned above experimen-
tally. We used Keras [7] with the TensorFlow [1] backend, that uses the GPU to
accelerate forward and backward propagation to implement NNs.

Evaluation on Data Generated Using GMAM Using GMAM, we gener-
ated 200,000 training data points, 10,000 validation data points, and 10,000 test
data points. Each data point is a binary CSP of 128 Boolean variables limited
by the computational capacity of our hardware and the size of our CSP-cNN.
For each data point, we randomly chose p and all g;;’s between 0.12 and 0.99.
Theorem 1 guarantees that the probability of mislabeling an UNSATISFIABLE
data point is < 2128 x (1 —0.12 x 0.12)"2*02=D/2 — 9 14 % 10-13. Half of
the data points in each of the training, validation, and test datasets are labeled
SATISFIABLE and the others UNSATISFIABLE.

We first trained our CSP-cNN using the training data generated above. We
initialized all parameters using He-initialization [14]. We trained our CSP-cNN

Table 2: First two columns show test accuracies of CSP-
cNN in all 3 rounds of cross validation. Last column
Table 1: Test accuracies on GMAM gener- shows the test accuracy of CSP-cNN (trained on GMAM

ated data. generated data) on MMEM generated data.
CSP-cNN NN-image NN-1 NN-2 M Data Trained Mixed MMEM GMAM
Acc (%) >99.99 50.01 98.11 98.66 64.79 Acc (%) 100.00/100.00/100.00 50.00/50.00/50.00 50.00

using stochastic gradient descent (SGD) with a mini-batch size of 128 for 59
epochs. In each epoch, we randomly shuffled all data points. We used a learning
rate of 0.01 for the first 5 epochs and a learning rate of 0.001 for the last 54
epochs. We used binary cross entropy as the loss function. Each epoch took
about 520 seconds to finish on a GPGPU “NVIDIA(R) Tesla(R) K80.”

After training, all training, validation, and test accuracies were greater than
99.99%. Therefore, we conclude that, while constraint tightnesses and constraint
densities do not determine the satisfiabilities of CSPs, deep NNs, such as our
CSP-cNN, can be capable of accurate predictions when a huge amount of training
data are available, at least on Boolean binary CSPs.

To further demonstrate the effectiveness of our CSP-cNN on GMAM gen-
erated data, we also compared our CSP-cNN with three other NNs. The first
NN, referred to as NN-image, had the same architecture as our CSP-cNN, but
its input was a gray-scale image converted from the ASCII codes of its input
text file as described in [19]. The other two NNs were plain, i.e., had only fully
connected hidden layers. The first plain NN, referred to as NN-1, had only 1 fully
connected hidden layer with 256 ReLLUs and 1 output layer with a single neuron
with a sigmoid activation function, i.e., the last two layers of our CSP-cNN. This
is a classical shallow NN architecture. The second plain NN, referred to as NN-
2, was constructed by inserting 1 more fully connected hidden layer with 1024
ReLUs after the input layer in NN-1. Both plain NNs used the same parameter
initialization and regularization as our CSP-cNN. We trained NN-image using
a training procedure similar to that of CSP-cNN except that it used one more
epoch with a learning rate of 0.01. We trained both plain NNs for 120 epochs
using SGD with a learning rate of 0.01 for the first 60 epochs and 0.001 for the
last 60 epochs. They both used a mini-batch size of 128.

Our experimental results are shown in Table 1. The test accuracy of our
CSP-cNN was better than those of NN-1 and NN-2 and far better than that
of NN-image. Thus, the CSP matrix of a CSP seems to provide a better input
representation than the approach in [19] and seems to reveal useful structure of
the CSP. We also compared with an approach that predicts a CSP’s satisfiability
using its number of incompatible tuples, referred to as “M” in Table 1. It selects
a threshold and predicts CSPs with a number of incompatible tuples above this
threshold to be unsatisfiable and other CSPs to be satisfiable. The best threshold
for the test data is 13435 and led to an accuracy of 64.79%.

Evaluation of Domain Adaptation and Data Augmentation Due to the
lack of small (n < 128) benchmark instances of Boolean binary CSPs where satis-
fiabilities need to be determined, we randomly generated 1,200 binary CSPs with

128 Boolean variables using a model similar to Model E [2]. We generated only
1,200 CSPs to mimic most real-world scenarios where labeled CSPs are costly
to obtain. We generated these CSPs as follows. We divided all CSPs into two
groups. For each CSP in the first group, (a) we divided the 128 Boolean variables
into two partitions, with 64 variables each; (b) for each pair of variables from
different partitions, we randomly added a binary constraint between them with
probability 0.99; (c¢) within each constraint, we randomly marked exactly 2 (out
of 4) tuples as incompatible. For each CSP in the second group, we generated
it using a similar approach, except that, in Step (c), we also guaranteed that
incompatible tuples do not rule out a randomly generated solution (while it re-
mains that exactly 2 tuples are incompatible in each constraint). We refer to this
random CSP generation method as Modified Model E-based method (MMEM).
Using Choco [22], we labeled 600 CSPs SATISFIABLE and 600 UNSATISFIABLE.

The distribution of CSPs resulting from using MMEM is different from that
of the ones resulting from using GMAM, for the following reasons. There are for-
mally proven significant differences between the asymptotic satisfiability proper-
ties of Model A and Model E [2]. Step (a) yields a bipartite variable interaction
structure. Step (c) guarantees the same tightness in each constraint, which makes
the satisfiabilities of the CSPs unrecognizable from their tightnesses. For these
reasons, these random CSPs suffice for a proof of concept.

We evaluated the effectiveness of domain adaptation and data augmentation
for our CSP-cNN on the CSPs generated by MMEM using stratified 3-fold cross
validation, i.e., we divided the 1,200 CSPs into 3 sets with equal numbers of
satisfiable and unsatisfiable CSPs. Since there are only 400 data points in each
of these 3 sets, for each data point in the training set, we used the augmentation
method in Section 2.2 124 times to produce 124 more data points each. There-
fore, in each round of cross validation, we used 125 x 800 = 100,000 training
data points. We mixed these 100,000 data points with the 200,000 data points
generated using GMAM and trained our CSP-cNN on them. We used SGD and
trained for 30 epochs. We used a learning rate of 0.01 in the first 10 epochs and
a learning rate of 0.001 in the last 20 epochs. As a baseline, we also trained
CSP-cNN by augmenting each data point for 324 times so that the number of
training data points was also 325 x 800 = 300,000 in each round. The train-
ing procedure was the same. We also directly applied the CSP-cNN previously
trained on GMAM generated data to all 1,200 data points.

Our experimental results are shown in Table 2. Our mixed data points pro-
duced test accuracies of 100% in all three rounds of cross validation. On the
other hand, CSP-cNNs trained only on augmented MMEM or GMAM gener-
ated data have high test errors in (cross) validation and always produced the
same prediction regardless of their input. When training our CSP-cNN only on
augmented MMEM generated data, we were unable to reduce the test error even
by tuning hyperparameters, such as the learning rate, initialization, and the op-
timization algorithm. This shows that our GMAM generated data seem to play
a key role in enabling effective deep learning for CSPs via domain adaptation.
To further confirm this, we ran similar experiments with various percentages

Table 3: Test accuracies of all three rounds of cross validation for different percentages of MMEM
generated data when domain adaptation is used.

Percentage of MMEM (%) 0.00 33.33 36.00 40.00 46.66 53.33 66.67 70.67 78.67 100.00

Average Accuracy (%) 50.00 100.00 100.00 83.33 66.67 83.33 66.67 66.67 50.00 50.00

of MMEM generated data in the training data by varying the number of times
each data point is augmented. In these experiments, GMAM generated data
points were randomly selected to fill the total number of training data points to
300,000. Table 3 shows our experimental results. When MMEM generated data
points constituted 33.33-36.00% of the training data, the average test accuracies
reached 100%. However, when MMEM generated data points constituted more
than 40.00% of the training data, the test accuracies became lower and unstable.

4 Conclusions and Future Work
In this paper, we effectively applied our CSP-cNN, a deep NN architecture, to
predict satisfiabilities of CSPs with prediction accuracies higher than 99.99%. To
the best of our knowledge, this is the first effective application of deep learning
to random CSPs whose constraint tightnesses and constraint densities do not
determine their satisfiabilities. Due to the NP-hardness of CSPs, training data
are usually too scarce to be effectively used by deep learning. We addressed this
issue by generating huge amounts of labeled data using GMAM. We experimen-
tally demonstrated the high effectiveness (>99.99% test accuracy) of applying
our CSP-cNN to these data on random Boolean binary CSPs. While these CSPs
are known to be in P, we used them as an initial demonstration. For CSPs drawn
from a distribution different from that of GMAM, we once again addressed the
issue of lack of training data. We did this by augmenting the training data and
mixing them with GMAM generated CSPs. Finally, we experimentally demon-
strated the superior effectiveness of these techniques on MMEM generated CSPs.
So far, we have only experimented on small easy random CSPs that were gen-
erated in two very specific ways. One future research direction is to understand
the generality of our approach, for example, by experimenting on larger, hard,
and real-world CSPs, analyzing what our CSP-cNN learns, and evaluating how
robust our approach is with respect to the training data and hyperparameters.
A second future research direction is to understand exactly how our approach
should be used, for example, how the effectiveness of our CSP-cNN depends on
the amount of available training data and the amount of data augmentation used
to increase them. A third future research direction is to generalize our CSP-cNN
to accommodate more types of constraints. (a) For non-binary table constraints,
we could naively increase the dimensionality of the CSP matrix to be equal to
the maximum arity of the constraints. A more practical method might be to
represent input CSPs as constraint graphs and adapt the graph representation
methods in [20]. (b) For symmetric global constraints, we could adapt the meth-
ods that apply recurrent NNs (rNNs) to Boolean satisfiability [25]. Then, an NN
architecture that combines cNNs and rNNs could be used.

The research at the University of Southern California (USC) was supported by National Science Foundation
(NSF) under grant numbers 1724392, 1409987, and 1319966.

References

N o

10.

11.

12.

13.

14.

15.

16.

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, 1., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, 1., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),
https://www.tensorflow.org/, software available from tensorflow.org
Achlioptas, D., Molloy, M.S.O., Kirousis, .M., Stamatiou, Y.C., Kranakis, E.,
Krizanc, D.: Random constraint satisfaction: A more accurate picture. Constraints
6(4), 329-344 (2001)

Amadini, R., Gabbrielli, M., Mauro, J.: An empirical evaluation of portfolios ap-
proaches for solving CSPs. In: the International Conference on Integration of Artifi-
cial Intelligence and Operations Research Techniques in Constraint Programming.
pp. 316-324 (2013)

Amadini, R., Gabbrielli, M., Mauro, J.: An enhanced features extractor for a port-
folio of constraint solvers. In: the Annual ACM Symposium on Applied Computing.
pp. 1357-1359 (2014)

Arbelaez, A., Hamadi, Y., Sebag, M.: Continuous search in constraint program-
ming. In: the IEEE International Conference on Tools with Artificial Intelligence.
pp. 53-60 (2010)

Bourlard, H.A., Morgan, N.: Connectionist Speech Recognition. Springer (1994)
Chollet, F., et al.: Keras. https://keras.io (2015)

Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. In: the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 3642-3649 (2012)

. Galassi, A., Lombardi, M., Mello, P., Milano, M.: Model agnostic solution of CSPs

via deep learning: A preliminary study. In: the International Conference on the
Integration of Constraint Programming, Artificial Intelligence, and Operations Re-
search. pp. 254262 (2018)

Gent, [.P., Jefferson, C., Kotthoff, L., Miguel, 1., Moore, N.C., Nightingale, P.,
Petrie, K.: Learning when to use lazy learning in constraint solving. In: the Euro-
pean Conference on Artificial Intelligence. pp. 873-878 (2010)

Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
Guerri, A., Milano, M.: Learning techniques for automatic algorithm portfolio se-
lection. In: the European Conference on Artificial Intelligence. pp. 475-479 (2004)
Hahnloser, R.H.R., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., Seung, H.S.:
Digital selection and analogue amplification coexist in a cortex-inspired silicon
circuit. Nature 405, 947-951 (2000)

He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on ImageNet classification. In: the IEEE International Confer-
ence on Computer Vision. pp. 1026-1034 (2015)

Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC — instance-specific
algorithm configuration. In: the European Conference on Artificial Intelligence.
pp. 751-756 (2010)

Kotthoff, L.: Algorithm selection for combinatorial search problems: A survey. In:
Data Mining and Constraint Programming: Foundations of a Cross-Disciplinary
Approach, pp. 149-190 (2016)

https://www.tensorflow.org/
https://keras.io

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: the Neural Information Processing Systems Con-
ference. pp. 1097-1105 (2012)

LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural
Computation 1(4), 541-551 (1989)

Loreggia, A., Malitsky, Y., Samulowitz, H., Saraswat, V.: Deep learning for algo-
rithm portfolios. In: the AAATI Conference on Artificial Intelligence. pp. 12801286
(2016)

Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks
for graphs. In: the International Conference on Machine Learning. pp. 2014-2023
(2016)

O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: the Irish Con-
ference on Artificial Intelligence and Cognitive Science (2008)

Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation. TASC - LS2N
CNRS UMR 6241, COSLING S.A.S. (2017), http://www.choco-solver.org
Pulina, L., Tacchella, A.: A multi-engine solver for quantified Boolean formulas. In:
the International Conference on Principles and Practice of Constraint Program-
ming. pp. 574-589 (2007)

Sateesh Babu, G., Zhao, P., Li, X.L.: Deep convolutional neural network based
regression approach for estimation of remaining useful life. In: the International
Conference on Database Systems for Advanced Applications. pp. 214-228 (2016)
Selsam, D., Lamm, M., Biinz, B., Liang, P., de Moura, L., Dill, D.L.: Learning a
SAT solver from single-bit supervision. arXiv:1802.03685 [cs.AI] (2018)

Smith, B.M., Dyer, M.E.: Locating the phase transition in binary constraint satis-
faction problems. Artificial Intelligence 81(1), 155-181 (1996)

Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based al-
gorithm selection for SAT. Journal of Artificial Intelligence Research 32, 565-606
(2008)

Errata

— The word “disallowed” in the first paragraph of Section 2 should be “al-

lowed.”

— The occurrences of “324” and “325” in the third paragraph on page 7 should

be replaced by “374” and “375”, respectively.

http://www.choco-solver.org

	Towards Effective Deep Learning forConstraint Satisfaction Problems
	Introduction
	Preliminaries

	Enabling Deep Learning for CSPs
	Efficient Massive Training Data Generation
	Training and Prediction on General CSP Datasets

	Experimental Evaluation
	Evaluation on Data Generated Using GMAM
	Evaluation of Domain Adaptation and Data Augmentation

	Conclusions and Future Work

