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Executive Summary

• The Constraint Satisfaction Problem (CSP) is a fundamental problem
in constraint programming.

• Traditionally, the CSP has been solved using search and constraint
propagation.

• For the first time, we attack this problem using a convolutional Neural
Network (cNN) with preliminary high effectiveness on subclasses of
CSPs that are known to be in P.
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Overview

In this talk:

• We intend to use convolutional neural networks (cNNs) to predict the
satisfiability of the CSP.

• We review the concepts of the CSP and cNNs.
• We present how a CSP instance can be input of a cNN.
• We develop Generalized Model A-based Method (GMAM) to efficiently
generate massive training data with low mislabeling rates, and
present how they can be applied to general CSP instances.

• As a proof of concept, we experimentally evaluated our approaches
on binary Boolean CSP instances (which are known to be in P).

• We discuss potential limitations of our approaches.
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Constraint Satisfaction Problem (CSP)

• N variables X = {X1, X2, . . . , XN}.
• Each variable Xi has a discrete-valued domain D(Xi).
• M constraints C = {C1, C2, . . . , CM}.
• Each constraint Ci is a list of tuples in which each specifies the
compatibility of an assignment a of values to a subset S(Ci) of the
variables.

• Find an assignment a of values to these variables so as to satisfy all
constraints in C.

• Decision version: Does there exist such an assignment a?
• Known to be NP-complete.
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Example

• X = {X1, X2, X3}, C = {C1, C2}, D(X1) = D(X2) = D(X3) = {0, 1}
• C1 disallows {X1 = 0, X2 = 0} and {X1 = 1, X2 = 1}.
• C2 disallows {X2 = 0, X3 = 0} and {X2 = 1, X3 = 1}.
• There exists a solution, and {X1 = 0, X2 = 1, X3 = 0} is one solution.
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The Convolutional Neural Network (cNN)

• is a class of deep NN architectures.
• was initially proposed for an object recognition problem and has
recently achieved great success.

• is a multi-layer feedforward NN that takes a multi-dimensional
(usually 2-D or 3-D) matrix as input.

• has three types of layers:
• A convolutional layer performs a convolution operation.
• A pooling layer combines the outputs of several nodes in the previous
layer into a single node in the current layer.

• A fully connected layer connects every node in the current layer to
every node in the previous layer.
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Architecture
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CSP-cNN. L2 regularization coefficient 0.01 (output layer 0.1). 7/20



A Binary CSP Instance as a Matrix

• A symmetric square matrix
• Each row and column represents a variable Xi ∈ X and an assignment
xi ∈ D(Xi) of value to it (i.e., Xi = xi)

• An entry is 0 if its corresponding assignments of values are compatible.
Otherwise, it is 1.

• Example: {Xi = 0, Xj = 1} and {Xi = 1, Xj = 0} are incompatible.

Xi = 0 Xi = 1 Xj = 0 Xj = 1
Xi = 0 0 1 0 1
Xi = 1 1 0 1 0
Xj = 0 0 1 0 1
Xj = 1 1 0 1 0
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Lack of Training Data

• Deep cNNs need huge amounts of data to be effective.
• The CSP is NP-hard, which makes it hard to generate labeled training
data.

• Need to generate huge amounts of training data with
• efficient labeling and
• substantial information.
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Generalized Model A

• Generalized Model A is a random CSP generation model.
• Randomly add a constraint between each pair of variables Xi and Xj
with probability p > 0.

• Add an incompatible tuple for each assignment {Xi = xi, Xj = xj} with
probability qij > 0.

• Property: As the number of variables tends to infinity, it generates
only unsatisfiable CSP instances (extension of results for Model
A (Smith et al. 1996)).

• Quick labeling: A CSP instance generated by generalized Model A is
likely to be unsatisfiable, and we can inject solutions in CSP instances
generated by generalized Model A to generate satisfiable CSP
instances.
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Generating Training Data

• Randomly select p and qij and use generalized Model A to generate
CSP instances.

• Inject a solution: For half of these instances, randomly generate an
assignment of values to all variables and remove all tuples that are
incompatible with it.

• We now have training data, in which half are satisfiable and half are
not.

• Mislabeling rate: Satisfiable CSP instances are 100% correctly labeled.
We proved that unsatisfiable CSP instances have mislabeling rate no
greater than

∏
Xi∈X |D(Xi)|

∏
Xi,Xj∈X (1− pqij).

• This mislabeling rate can be as small as 2.14× 10−13 if p,qij > 0.12.
• No obvious parameter indicating their satisfiabilities. 11/20



To Predict on CSP Instances not from Generalized Model A…

• Training data from target data source are usually scarce due to CSP’s
NP-hardness.

• Need domain adaptation: Mixing training data from target data source
and generalized Model A.

Data generated by generalized Model A Data from target distribution

Large Amount of Data Data With Target Info

Mix
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To Creating More Instances…

• Augmenting CSP instances from target data source without changing
their satisfiabilities (label-preserved transformation):

• Exchanging rows and columns representing different variables.
• Exchanging rows and columns representing different values of the same
variable.

• Example: Exchange the red and blue rows and columns.

Xi = 0 Xi = 1 Xj = 0 Xj = 1
Xi = 0 0 1 0 1
Xi = 1 1 0 0 1
Xj = 0 0 0 0 1
Xj = 1 1 1 1 0
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On CSP Instances Generated by Generalized Model A

• 220,000 binary Boolean CSP instances by Generalized Model A.
• They are in P; we evaluated on them as a proof of concept.

• p and qij are randomly selected in the range [0.12, 0.99] (mislabeling
rate ≤ 2.14× 10−13).

• Half are labeled satisfiable and half are labeled unsatisfiable.
• Training data: 200, 000 CSP instances
• Validation and Test data: 10, 000 and 10, 000 CSP instances

• Training hyperparameters:
• He-initialization
• Stochastic gradient descent (SGD)
• Mini-batch size 128
• Learning rates: 0.01 in the first 5 and 0.001 in the last 54 epoches
• Loss function: Binary cross entropy 14/20



On CSP Instances Generated by Generalized Model A

• Compared with three other NNs and a naive method
• NN-1 and NN-2: Plain NNs with 1 and 2 hidden layers.
• NN-image: An NN that can be applied to CSPs (Loreggia et al. 2016).
• M: A naive method using the number of incompatible tuples.
• Trained NN-1 and NN-2/NN-image using SGD for 120/60 epoches with
learning rates 0.01 in the first 60/5 epoches and 0.001 in the last 60/55
epoches.

• Results:
CSP-cNN NN-image NN-1 NN-2 M

Accuracy (%) >99.99 50.01 98.11 98.66 64.79
• Although preliminary, to the best of our knowledge, this is the very
first known effective deep learning application on the CSP with no
obvious parameters indicating their satisfiabilities. 15/20



On a Different Set of Instances: Generated by Modified Model E

• Modified Model E: Generating very different CSP instances from those
using generalized Model A.

• Divide all variables into two partitions and randomly add a binary
constraint between every pair of variables with probability 0.99.

• For each constraint, randomly mark exactly two tuples as
incompatible.

• Generate 1200 binary Boolean CSP instances and compute their
satisfiabilities using Choco (Prud’homme et al. 2017).

• Once again, these instances are in P, but we evaluated on them as a
proof of concept.
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On a Different Set of Instances: Generated by Modified Model E

• 3-fold cross validation: 800 training data points and 400 test data
points

• Mixed: Augment each training data for 124 times and mix them with
CSP instances generated by generalized Model A (300,000 data points
for training).

• Baselines:
• MMEM: Train on these training data after augmenting them for 374 times
(to generate 300,000 data points).

• GMAM: Train on CSP instances generated using generalized Model A only.

• Results: Trained On Mixed Data MMEM Data GMAM Data

Accuracy (%) 100.00/100.00/100.00 50.00/50.00/50.00 50.00
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Varying Percentage of MMEM Generated Data when Training

• We varied the percentage of data generated by modified Model E (i.e.,
augmented data) in the training dataset.

• Results

Percentage of MMEM (%) 0.00 33.33 36.00 40.00 46.66 53.33 66.67 70.67 78.67 100.00

Average Accuracy (%) 50.00 100.00 100.00 83.33 66.67 83.33 66.67 66.67 50.00 50.00

• There exists an optimal mixture percentage.
• This mixture percentage is another hyperparameter to tune.
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Discussion on the Limitations

• So far, we have only experimented on small easy random CSPs that
were generated in two very specific ways.

• We still need to
• understand the generality of our approach, e.g., on larger, hard, and
real-world CSPs,

• analyze what our CSP-cNN learns,
• evaluate how robust our approach is with respect to the training data
and hyperparameters, and

• understand exactly how our approach should be used, for example,
how the effectiveness of our CSP-cNN depends on the amount of
available training data and the amount of data augmentation used to
increase them.
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Conclusion and Future Work

• We developed a machine learning algorithm for predicting
satisfiabilities for CSP instances using a deep cNN.

• As a proof of concept, we demonstrate its effectiveness on binary
Boolean CSP instances generated using generalized Model A and
modified Model E.

• For the first time, we have an effective deep learning approach for the
CSP, although we evaluated them on CSPs in P.

• This opens up many future directions:
• Would it work well on hard CSP instances?
• Using this satisfiability prediction to guide search algorithms for solving
the CSP: Choose the most effective variable to instantiate next.

• Apply transfer learning techniques to predict other interesting
properties of CSP instances, such as the best algorithm to solve them. 20/20
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