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I. Abstract

In this paper, we apply deep learning to predict the satisfiabilities of CSPs. To the best of our knowl-
edge, this is the first effective application of deep learning to CSPs that yields >99.99% prediction
accuracy on random Boolean binary CSPs whose constraint tightnesses or constraint densities do not
determine their satishiabilities. We use a deep convolutional neural network on a matrix representa-
tion of CSPs. Since it is NP-hard to solve CSPs, labeled data required for training this neural network
are In general costly to produce and are thus scarce. We address this issue using the asymptotic be-
havior of generalized Model A, a new random CSP generation model, along with domain adaptation
and data augmentation techniques for CSPs. We demonstrate the effectiveness of our deep learning
techniques using experiments on random Boolean binary CSPs. While these CSPs are known to be
in P, we used them as an initial attempt.

I1I. Motivation and Challenges

e Deep learning has achieved great success in the past decade in fields such as computer vision and
natural language processing. Unlike most other supervised learning algorithms, it does not require
handcrafting features. Therefore, it is desirable to apply it to CSPs.

e However, deep learning usually requires huge amounts of training data to be effective.

e Therefore, it is challenging to apply deep learning on CSPs, since it is NP-hard to solve CSPs and
thus it is costly to label them, such as computing their satisfabilities or finding the most efficient
algorithms to solve them.

I1I. Definition

e A CSP is defined as a tuple (X, D, C), where

-X ={Xy,..., X, } is a set of variables,
—D ={D,...,D,} is a set of domains corresponding to their respective variables, and
—C ={C},...,C,} is a set of constraints.

e Each constraint C; € C is a pair (S(C}), R;), where S(C}) is a subset of X and R; is a |S(C})|-ary
relation that specifies incompatible and compatible assignments of values to variables in S(C;).
e In a table constraint C;, R; is a set of tuples, each of which indicates the compatibility of an

assignment of values to variables in S(C;). A tuple is compatible if it specifies a compatible
assignment of values to variables, and is otherwise incompatible.

IV. (Deep) Convolutional Neural Network (cNN)

e cNNs were initially proposed for object recognition tasks [1].

— Convolutional layers: perform a convolution operation.

— Pooling layers: combine the outputs of several nodes in the previous layer into a single node in
the current layer.

— Fully connected layers: connect every node in the current layer to every node in the previous
layer.
e Representing input CSPs as CSP matrices, where

—each row / column represents an assignment of a value to a variable X; = x; / X; =z, and

—the element in this row and column indicates the compatibility of the tuple {X; = x;, X, = =}
(0 indicates compatibility, and 1 indicates incompatibility.)
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Figure 1: The architecture of our cNN, referred to as CSP-cNN.

V. Efficient Training Data Generation

e We created generalized Model A, a random binary CSP generation model
generalized from Model A [3].

—For every two variables X; and X, add a constraint between them with
probability p.
— For every constraint between X; and X;, mark each tuple as incompatible
with probability g;;.
e We label all CSPs generated by generalized Model A UNSATISFIABLE.
e To generate a CSP labeled SATISFIABLE,

—generate a random solution a,
—generate a CSP using generalized Model A, and
—in each constraint, mark a tuple incompatible it it conflicts with a.

e The probability to (mis)label a satisfiable CSP UNSATISFIABLE is no greater
than JTx.cx | D(Xi)|ILx, x,ex (1 — pgij).
e We refer to this training data generation method as generalized Model A-

based method (GMAM).

V1. Domain Adaptation and
Data Augmentation

e Domain adaptation:

— A deep NN is usually ineffective on target dataset if it is trained on a dataset
from a different distribution.

— Mix the target dataset with a GMAM generated dataset.

e Data Augmentation: Create more training data by exchanging rows and
columns in CSP matrices.

V1I. Experimental Results

e On Boolean binary CSPs with 128 variables

e GMAM generated dataset: 300,000 training data points, 10,000 validation
data points, and 10,000 test data points.

OSP-cNN NN-image [2] NN-1 NN-2 M
Acc (%) >99.99 50.01  98.11 98.66 64.79

e Modified Model E-based method (MMEM) generated dataset: 1200 data
points in total, 3-fold cross validation.

— bipartite structure

— Data augmentation on MMEM data and mixing with GMAM generated
data

Data Trained Mixed MMEM GMAM
Accuracy (%) 100.00/100.00/100.00 50.00/50.00/50.00 50.00

e Varying percentage of MMEM generated data in the training dataset

Percentage of MMEM (%) 0.00 33.33 36.00 40.00 46.66 53.33 66.67 70.67 78.67 100.00

50.00 100.00 100.00 83.33 66.67 83.33 66.67 66.67 50.00 50.00

Average Accuracy (%)
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