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Abstract. A vertex cover (VC) of a graph G is a subset of vertices in
G such that at least one endpoint vertex of each edge in G is in this
subset. The minimum VC (MVC) problem is to identify a VC of min-
imum size (cardinality) and is known to be NP-hard. Although many
local search algorithms have been developed to solve the MVC problem
close-to-optimally, their applicability on giant graphs (with no less than
100,000 vertices) is limited. For such graphs, there are two reasons why
it would be beneficial to have linear-time-and-space algorithms that pro-
duce small VCs. Such algorithms can: (a) serve as preprocessing steps
to produce good starting states for local search algorithms and (b) also
be useful for many applications that require finding small VCs quickly.
In this paper, we develop a new linear-time-and-space algorithm, called
MVC-WP, for solving the MVC problem on giant graphs based on the
idea of warning propagation, which has so far only been used as a theoret-
ical tool for studying properties of MVCs on infinite random graphs. We
empirically show that it outperforms other known linear-time-and-space
algorithms in terms of sizes of produced VCs.

1 Introduction

Thanks to the advancement of technologies such as the Internet and database
management systems, datasets have been growing tremendously over the past
decade. Many of the resulting datasets can be modeled as graphs, such as social
networks, brain networks, and street networks. Therefore, it is essential to de-
velop algorithms to solve classical combinatorial problems on giant graphs (with
no less than 100,000 vertices).

A vertex cover (VC) on an undirected graph G = 〈V,E〉 is defined as a set of
vertices S ⊆ V such that every edge in E has at least one of its endpoint vertices
in S. A minimum VC (MVC) is a VC on G of minimum size (cardinality), i.e.,
there exists no VC whose size is smaller than that of an MVC. The MVC problem
is to find an MVC on a given graph G. Its decision version is known to be NP-
complete [18]. An independent set (IS) on G is a set of vertices T ⊆ V such that
no two vertices in T are adjacent to each other. The complement of a (maximum)
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IS is a (minimum) VC and vice versa, i.e., for any (maximum) IS T , V \ T is
always a (minimum) VC.

The MVC problem has been widely used to study various real-world and theo-
retical problems. For example, in practice, it has been used in computer network
security [11], in crew scheduling [24], and in the construction of phylogenetic
trees [1]. In theoretical research, it has been used to prove the NP-completeness
of various other well-known problems, such as the set cover problem and the
dominating set problem [19]. It is also a fundamental problem studied in the
theory of fixed-parameter tractability [13].

Various researchers have developed exact solvers [10,21,27,29] for the MVC
problem and its equivalents. However, none of these solvers work well for large
problem instances of the MVC problem due to its NP-hardness. Furthermore,
solving the MVC problem within any approximation factor smaller than 1.3606
is also NP-hard [8].

To overcome the poor efficiency of exact algorithms and the high approx-
imation factor of polynomial-time approximation algorithms, researchers have
focused on developing non-exact local search algorithms [2, 5, 6, 22] for solving
the MVC problem and its equivalents. These algorithms often require a prepro-
cessing step to construct a VC (usually the smaller the better) before starting
the local search. While polynomial-time procedures work well for the prepro-
cessing step on regular-sized graphs, they are prohibitively expensive on giant
graphs. On giant graphs, this preprocessing step needs to terminate fast and
should use only a moderate amount of memory. Therefore, it is important to
develop a linear-time-and-space algorithm to find a small VC.

In addition, many real-world applications on giant graphs require the identifi-
cation of small VCs but not necessarily MVCs. One example of such applications
is the influence-maximization problem in social networks [14]. Here, too, linear-
time-and-space algorithms for finding small VCs are important.

In this paper, we develop a new linear-time-and-space algorithm, called MVC-
WP, for solving the MVC problem on giant graphs based on the idea of warning
propagation, which has so far only been used as a theoretical tool for studying
properties of MVCs on infinite random graphs. We then empirically show that
MVC-WP has several advantages over other linear-time-and-space algorithms.
We also experiment with variants of MVC-WP to empirically demonstrate the
usefulness of various steps in it.

2 Background

In this section, we introduce relevant background on random graph models,
warning propagation, and existing linear-time-and-space MVC algorithms known
to the authors.

2.1 Random Graph Models

The Erdős-Rényi Model An Erdős-Rényi model (ER model) [9] is character-
ized by two parameters n and p. It generates random graphs with n vertices and
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(b) u sends a message of 0 to v since at
least one of its incoming messages from its
other neighbors is 1.

Fig. 1: Illustrates the update of a message from u ∈ V to v ∈ V in the warning
propagation algorithm for the MVC problem on graph G = 〈V,E〉. Only relevant parts
of G are shown, i.e., u, v, and all edges incident to u.

connects every pair of vertices with probability p. We call a graph generated by
an ER model an ER graph. The degrees of the vertices of an ER graph follow a
Poisson distribution. The average degree of vertices is c = np.

The Scale-Free Model A scale-free model (SF model) [4] is characterized by
two parameters n and λ > 2. It generates random graphs whose vertex degree
distribution follows a power law, i.e., P (d) ∼ d−λ. The average degree of vertices
is therefore

c =

+∞∑
d=1

P (d)d =
ζ(λ− 1)

ζ(λ)
, (1)

where ζ(x) =
∑∞
k=1

1
kx is the Riemann zeta function. For notational convenience,

we define Z(λ) = ζ(λ−1)
ζ(λ) . We call a graph generated by an SF model an SF graph.

2.2 Warning Propagation

The warning propagation algorithm is a specialized message passing algorithm
where information is processed locally and exchanged between relevant vari-
ables [20]. In the warning propagation algorithm, messages can only take one of
two values, namely 0 or 1. To analyze properties of MVCs on infinite random
graphs, [26] proposed an algorithm that uses warning propagation for solving
the MVC problem to help with their theoretical analysis. In their algorithm,
messages are passed between adjacent vertices. A message of 1 from u ∈ V to
v ∈ V indicates that u is not in the MVC and thus it “warns” v to be included in
the MVC. Otherwise, if u is in the MVC, this message would be 0. Based on this
intuition, the warning propagation algorithm updates messages according to the
following rules: A message from u to v is updated to 1 iff all incoming messages
to u from its other neighbors equal 0, i.e., no other adjacent vertices of u require
u to be in the VC. Otherwise, this message would be 0. Figure 1 illustrates these
rules. Upon convergence, vertices with at least one incoming messages equal to
1 are included in the VC, and other vertices are excluded from the VC. The
theoretical analysis in [26] mainly focuses on ER graphs. It shows that, on an



infinitely large ER graph, a message is 1 with probability W (c)/c, where W (·)
is the Lambert-W function, i.e., the inverse function of f(x) = xex.

2.3 Known Linear-Time-and-Space MVC Algorithms

MVC-2 This well-known linear-time-and-space factor-2 approximation algo-
rithm for the MVC problem works as follows [25]: In each iteration, MVC-2 first
arbitrarily selects an uncovered edge, then marks it as well as the edges inci-
dent to its two endpoint vertices as being covered, and finally adds its endpoint
vertices to the VC. It terminates when all edges are marked as covered.

ConstructVC Serving as a preprocessing step, this algorithm is a greedy linear-
time-and-space subroutine in the FastVC solver [5], that constructs a minimal
VC1. It works as follows: In each iteration, ConstructVC first arbitrarily selects
an uncovered edge, then adds its endpoint vertex v with the larger degree to the
VC, and finally marks all edges incident to v as being covered. When all edges
are marked as covered, it removes all redundant vertices in the VC to construct
a minimal VC.

R This algorithm is used as the preprocessing step to produce a maximal IS
(complement of a minimal VC) in the local search algorithm for solving the
maximum IS problem developed by [2]. R can be easily adjusted to produce a
minimal VC, and the adapted algorithm works as follows: R first adds all vertices
into the VC. In each iteration, R randomly removes a vertex v from the VC if it
continues to be a VC after the removal. It terminates when the VC is minimal.

MVC-MPL and MVC-L MVC-MPL is a linear-time-and-space MVC algo-
rithm based on some theoretical results of warning propagation on ER graphs.
It works as follows [28]: In each iteration, MVC-MPL first arbitrarily selects a

vertex v, then adds it to the IS with probability (1−W (c)/c)
κ(v)

, where κ(v) is
the degree of v, and otherwise to the VC. It terminates when every vertex has
been added to either the VC or the IS. MVC-L is a variant of MVC-MPL with
the probability of adding a vertex v to the IS replaced by 1/(κ(v) + 1) [28].

3 Warning Propagation on Scale-Free Graphs

Assuming that the warning propagation algorithm is applied on an SF graph,
we derive the approximate message distribution upon convergence by following
a method similar to that in [26, section IV.B]. We use p0 and p1 to denote the
fractions of all messages with values 0 and 1 upon convergence, respectively.
Clearly, we have

p0 + p1 = 1. (2)

1 A minimal VC is a VC such that no proper subset thereof is also a VC.



A message mu→v from vertex u to vertex v is equal to 1 iff all incoming messages
to u from its other neighbors are equal to 0, i.e., ∀w ∈ ∂u\ v : mw→u = 0, where
∂u is the set of vertices adjacent to u. Assuming that all messages incoming to
u are independent and using the fact that the probability distribution of the
number of such messages follows a power law on an SF graph, we have

1− p0 = p1 =

∞∑
d=1

d−λ

ζ(λ)
pd−1
0 =

Liλ(p0)

p0ζ(λ)
, (3)

where Liλ(x) =
∑∞
k=1

xk

kλ
is the polylogarithm function. After making the ap-

proximation Liλ(p0) ≈ p0 +
p20
2λ

, we solve Eq. (3) for p0 and have

p0 =
ζ(λ)− 1

ζ(λ) + 1
2λ

, (4)

where ∀λ > 2 : 0 ≤ p0 ≤ 1. Therefore, for any λ > 2, Eq. (4) is always a valid
solution for p0.

4 The Algorithm

Our algorithm MVC-WP (Algorithm 1) is based on the analytical results that
govern the warning propagation algorithm for the MVC problem [26]. MVC-WP
first uses Algorithm 2, an algorithm that prunes leaves, to identify those vertices
that are necessarily in some MVC and modifies the input graph accordingly. It
then treats this modified graph as if it were an ER or SF graph and computes
p0 using Algorithm 3. (Although MVC-WP treats the graph as if it were an ER
or SF graph, it does not impose any restrictions on the graph.) MVC-WP then

assigns each message from vertex u to vertex v to be 1 with probability p
κ(u)−1
0 ,

where κ(u) denotes the degree of u. This is done under the assumption that
all incoming messages of u have independent probabilities to be 0 or 1. Then,
MVC-WP performs warning propagation for M iterations, where M is a given
parameter. After M iterations, v is marked as being included in V C if it receives
at least one message of 1; otherwise, v is marked as being excluded in V C. If v
is excluded, MVC-WP marks all its adjacent vertices as being included in V C.
Finally, MVC-WP uses Algorithm 4 to remove redundant vertices from V C to
make it a minimal VC. This step is adapted from Lines 6 to 14 of Algorithm 2
in [5].

We note that, a warning propagation iteration in the warning propagation
algorithm proposed in [26] is not linear-time due to the requirement of traversing
incoming messages of vertex u when updating the message from vertex u to ver-
tex v. To avoid this traversal and thus make each warning propagation iteration
linear-time, for each vertex v, MVC-WP keeps track the number of messages
incoming to v that are equal to 1 in an array counter. This and the value of the
message from u to v provide enough information for updating the message.

We also note that, while MVC-WP is based on the analytical results from [26],
it differs significantly from the warning propagation algorithm proposed in [26].



Algorithm 1: MVC-WP.
1 Function MVC-WP(G = 〈V,E〉, model, M)

Input: G: The graph to find an MVC for.
Input: model: The random graph model to use (ER or SF).
Input: M : Number of iterations of the warning propagation algorithm.
Output: A minimal VC of G.

2 V C, IS :=Prune-Leaves(G);
3 p0 := Compute-p0(G, model);

4 Convert G to a directed graph G′ = 〈V,E′〉 by introducing 〈u, v〉 and 〈v, u〉 in E′ for
each (u, v) ∈ E;

5 Build an associative array m for the edges of G′ to represent messages;

6 Build an associative array counter for the vertices of G′ to record the number of
incoming messages that are equal to 1;

7 Initialize counter to zeros;
8 • Initialize messages:
9 for each 〈u, v〉 ∈ E′ do

10 Draw a random number r ∈ [0, 1];

11 if r ≤ pκ(u)−1
0 then

12 mu→v := 1;
13 counter(v) := counter(v) + 1;

14 else
15 mu→v := 0;

16 • Run M iterations of the warning propagation algorithm:
17 for t := 1, . . . ,M do
18 for each 〈u, v〉 ∈ E′ do
19 if counter(u)−mv→u = 0 then
20 if mu→v = 0 then
21 mu→v := 1;
22 counter(v) := counter(v) + 1;

23 else
24 if mu→v = 1 then
25 mu→v := 0;
26 counter(v) := counter(v)− 1;

27 • Construct a VC:
28 while ∃v ∈ V \ (V C ∪ IS) do
29 v := any vertex in V \ (V C ∪ IS);
30 if counter(v) = 0 then
31 Add v to IS and all u in ∂v to V C;
32 else
33 Add v to V C;

34 return Remove-Redundancy(G, V C);

MVC-WP introduces preprocessing and postprocessing steps before and after
warning propagation iterations. It also initializes messages intelligently. In addi-
tion, MVC-WP reduces the time complexity of a warning propagation iteration
to linear by using a counter array. Most importantly, MVC-WP is specifically
designed for being practically run, while the warning propagation algorithm pro-
posed in [26] lacks many algorithmic details, since [26] only uses it as a theoretical
tool to study properties of MVCs on ER graphs.

We now formally prove the correctness and time and space complexities of
MVC-WP.

Theorem 1. MVC-WP produces a minimal VC.



Algorithm 2: Prune leaves.
1 Function Prune-Leaves(G = 〈V,E〉)

Modified: G: The input graph.
2 Initialize vertex sets V C and IS to the empty set;
3 for each v ∈ V do
4 Prune-A-Leaf(G, V C, IS, v);

5 return V C, IS;

6 Function Prune-A-Leaf(G = 〈V,E〉, V C, IS, v)
Modified: G: The input graph.
Modified: V C: The current VC.
Modified: IS: The current IS.
Input: v: A vertex in V .

7 if κ(v) = 1 then
8 u := the only vertex adjacent to v;
9 V C := V C ∪ {u};

10 IS := IS ∪ {v};
11 U := ∂u \ {v};
12 Remove v and (u, v) from G;
13 for each w ∈ U do
14 Remove (u,w) from G;
15 Prune-A-Leaf (G, V C, IS, w);

16 Remove u from G;

Algorithm 3: Compute p0 for different random graph models.
1 Function Compute-p0(G, model)

Input: G: The input graph.
Input: model: The random graph model to use (ER or SF).

2 c := average degree of vertices in G;
3 if model is ER then
4 p0 := 1−W (c)/c;
5 else if model is SF then
6 λ := Z−1(c);
7 Compute p0 according to Eq. (4);

8 return p0;

Proof. Since [5] has proved that Remove-Redundancy produces a minimal VC
provided that variable V C in Algorithm 1 is a VC, it is sufficient to prove that,
right before Line 34 in Algorithm 1, variable IS is an IS, V C ∪ IS = V , and
V C ∩ IS = ∅.

In Algorithm 2, Lines 12 and 14 are the only steps that remove edges. How-
ever, these edges are covered by V C as shown on Line 9. In addition, V C ∪ IS
is the set of all removed vertices and V C ∩ IS = ∅, since each removed vertex is
added to either V C or IS. Therefore, IS is an independent set.

In Algorithm 1, message initialization and the M iterations of warning prop-
agation do not change the values of IS and V C.

In Lines 27 to 33 in Algorithm 1, since Line 31 guarantees that no two
adjacent vertices are added to IS, IS must be an IS of G. In addition, Line 28
guarantees IS ∪ V C = V and Lines 28, 31 and 33 guarantee IS ∩ V C = ∅.

Therefore, this theorem is true.

Theorem 2. The time complexity of MVC-WP is O(|V |+ |E|).



Algorithm 4: Remove redundant vertices from a given VC [5].

1 Function Remove-Redundancy(G = 〈V,E〉, V C)
Input: G: The input graph.
Input: V C: A VC of G.

2 Build an associative array loss for vertices in V C to record whether they can be
removed from V C;

3 Initialize loss to zeros;
4 foreach e ∈ E do
5 if only one endpoint vertex v of e is in V C then
6 loss(v) := 1;

7 foreach v ∈ V C do
8 if loss(v) = 0 then
9 V C := V C \ {v};

10 foreach v′ ∈ ∂v ∩ V C do
11 loss(v′) := 1;

12 return V C;

Proof. We first prove that Prune-Leaves terminates in O(|V | + |E|) time by
counting the number of times that Prune-A-Leaf is called, since the only loop
in Prune-A-Leaf makes only one recursive call in each iteration. Line 4 in Al-
gorithm 2 calls Prune-A-Leaf at most |V | times. Line 15 calls Prune-A-Leaf iff
edge (u,w) is removed from G. Therefore, Line 15 calls Prune-A-Leaf at most
|E| times.

Obviously, Compute-p0 terminates in constant time.
In Algorithm 1, Lines 8 to 15 iterate over each edge in G′ exactly once, and

therefore terminate in O(|E|) time; Lines 16 to 26 iterate over each edge in G′

exactly M times, and therefore terminate in O(|E|) time; Lines 27 to 33 consider
each vertex v in G′ at least once and at most κ(v) times, and therefore terminate
in O(|V |+ |E|) time.

[5] has proved that Remove-Redundancy terminates in O(|V |+ |E|) time.
Combining the results above, MVC-WP terminates in O(|V |+ |E|) time.

Theorem 3. The space complexity of MVC-WP is O(|V |+ |E|).

Proof. [5] has proved that Remove-Redundancy uses O(|V | + |E|) space. The
recursive calls of Prune-A-Leaf initiated in Prune-Leaves use O(|E|) stack
space. The remaining steps in MVC-WP require O(|E|) space to store messages
and O(|V |) space to store counter as well as the status of each vertex v, i.e.,
whether v is in V C, IS or undetermined yet. Therefore, MVC-MP uses O(|V |+
|E|) space.

4.1 Computing Special Functions

In Algorithm 3, we are required to compute a few special functions, namely
the Lambert-W function W (·), the Riemann zeta function ζ(·) and the inverse
function of Z(·). For some of these functions, researchers in the mathematics



Table 1: Shows the values of ζ(k) and Z(k) = ζ(k−1)
ζ(k)

for k ∈ {1, 2, . . . , 9}. The values

of ζ(k) are taken from [15, Table 23.3], and the values of Z(k) are computed from the
values of ζ(k).

k 1 2 3 4 5 6 7 8 9

ζ(k) +∞ 1.645 1.202 1.082 1.037 1.017 1.008 1.004 1.002

Z(k) - +∞ 1.369 1.111 1.043 1.020 1.009 1.004 1.002

community have already developed various numerical methods [7,16]. However,
they are too slow for MVC-WP, which does not critically need this high accuracy.
We now present a few new approaches to quickly compute them sufficiently
accurately.

4.2 The Lambert-W Function W (·)

We approximate W (·) via the first 3 terms of Equation (4.19) in [7], i.e.,

W (c) = L1 − L2 + L2/L1 +O
(
(L2/L1)2

)
, (5)

where L1 = log c and L2 = logL1.

4.3 The Riemann Zeta Function ζ(·)

For the SF model, we need to compute ζ(λ) in Eq. (4) for a given λ. To compute

ζ(λ), we approximate ζ(λ) via its first 20 terms, i.e., ζ(λ) =
∑20
k=1

1
kλ

+O( 1
21λ

).
This is sufficient, because λ > 2 always holds in MVC-WP due to Line 6 in
Algorithm 3 since ∀c ≥ 1 : Z−1(c) > 2. In this case, the sum of the remaining
terms is sufficiently small and can thus be neglected, because∑∞

k=21
1
kλ∑∞

k=1
1
kλ

≤
∑∞
k=21

1
kλ∑∞

k=1
1
k2

≈ 0.030. (6)

4.4 The Inverse Function of Z(·)

– For any x < 1.002, we approximate Z−1(x) to be equal to +∞ (and thus
approximate p0 to be equal to 0 in Algorithm 3).

– For any 1.002 ≤ x ≤ 1.369, we approximate Z−1(x) via linear interpolation
according to Table 1, i.e., we assume Z−1(x) changes linearly between two
consecutive entries given in Table 1.

– For any x > 1.369, we have 2 < k = Z−1(x) < 3. In this case, we approximate
ζ(k) via linear interpolation, i.e.,

ζ(k) ≈ 1.645− 0.443 · (k − 2). (7)

We approximate ζ(k − 1) via the first three terms of the Laurent series of
ζ(k − 1) at k = 2, i.e.,

ζ(k − 1) =
1

k − 2
+ γ − γ1(k − 2) +O

(
(k − 2)2

)
, (8)



Table 2: Compares sizes of VCs produced by MVC-WP-ER and MVC-WP-SF, re-
spectively, with those of alternative algorithms. The three numbers in the 3rd to 6th
columns represent the numbers of benchmark instances on which MVC-WP-ER and
MVC-WP-SF produce smaller/equal/larger VC sizes, respectively. The numbers in
parentheses indicate the number of benchmark instances in each benchmark instance
set.

Our Alternative Misc Web Street Brain
Algorithm Algorithm (397) (18) (8) (26)

MVC-WP-ER

ConstructVC 211/39/147 12/1/5 8/0/0 0/0/26
MVC-2 241/46/110 16/1/1 8/0/0 26/0/0

R 376/16/5 17/1/0 8/0/0 26/0/0
MVC-L 364/19/14 17/1/0 8/0/0 26/0/0

MVC-MPL 317/18/62 17/1/0 1/0/7 26/0/0

MVC-WP-SF

ConstructVC 209/38/150 11/1/6 8/0/0 0/0/26
MVC-2 249/45/103 15/1/2 8/0/0 26/0/0

R 377/15/5 17/1/0 8/0/0 26/0/0
MVC-L 363/21/13 17/1/0 8/0/0 26/0/0

MVC-MPL 316/18/63 17/1/0 1/0/7 26/0/0

where γ ≈ 0.577 is the Euler-Mascheroni constant and γ1 ≈ −0.0728 is the
first Stieltjes constant [12, page 166]. By plugging these two equations into

the definition of Z(k) (i.e., Z(k) = ζ(k−1)
ζ(k) = x) and solving for k, we have

the approximation

Z−1(x) ≈
1.645x− γ −

√
(1.645x− γ)2 − 4(0.443x− γ1)

2 · (0.443x− γ1)
+ 2. (9)

5 Experimental Evaluation

In this section, we experimentally evaluate MVC-WP. In our experiments, all
algorithms were implemented in C++, compiled by GCC 6.3.0 with the “-O3”
option, and run on a GNU/Linux workstation with an Intel Xeon Processor E3-
1240 v3 (8MB Cache, 3.4GHz) and 16GB RAM. Throughout this section, we
refer to MVC-WP using an ER model and an SF model as MVC-WP-ER and
MVC-WP-SF, respectively.

We used 4 sets of benchmark instances2. The first 3 sets of benchmark in-
stances were selected from the “misc networks”, “web networks”, and “brain
networks” categories in Network Repository3 [23]. All instances with no less
than 100,000 vertices as of July 8, 2017 were used. The fourth set of benchmark
instances consists of the benchmark instances in the “street networks” category
in the 10th DIMACS Implementation Challenge4 [3], in which 7 out of 8 bench-
mark instances have more than 1 million vertices. To obviate the influence of the
orders in which the edges are specified in the input files, we shuffled the edges
for each benchmark instance before applying the algorithms.

2 We compiled these benchmark instances in the DIMACS format and made them
available online at http://files.hong.me/papers/xu2018b-data.

3 http://networkrepository.com/
4 http://www.cc.gatech.edu/dimacs10/archive/streets.shtml

http://files.hong.me/papers/xu2018b-data
http://networkrepository.com/
http://www.cc.gatech.edu/dimacs10/archive/streets.shtml
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(a) MVC-WP-ER versus ConstructVC/MVC-2/R/MVC-L/MVC-MPL on the
misc networks benchmark instance set.
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(b) MVC-WP-SF versus ConstructVC/MVC-2/R/MVC-L/MVC-MPL on the
misc networks benchmark instance set.

Fig. 2: Compares sizes of VCs produced by MVC-WP-ER, MVC-WP-SF, and alter-
native algorithms on the misc networks benchmark instance set. The x-axes show the
relative suboptimality of MVC-WP-ER and MVC-WP-SF, respectively, compared with
alternative algorithms. The y-axes show the number of benchmark instances for a range
of relative suboptimality divided into bins of 1% (ranges beyond -10% and 10% are
treated as single bins). Bars of different colors indicate different algorithms. Higher
bars in the left half indicate that MVC-WP-ER and MVC-WP-SF, respectively, pro-
duce VCs of sizes smaller than the alternative algorithms.

To evaluate those algorithms that use random number generators, i.e., MVC-
WP-ER, MVC-WP-SF, R, MVC-L and MVC-MPL, we ran them 10 times on
each benchmark instance using different seeds. We recorded the average of the
VC sizes produced by these 10 runs. For all algorithms compared in this sec-
tion, we applied Prune-Leaves and Remove-Redundancy as preprocessing and
postprocessing steps, respectively, since they are universally useful.

We evaluated MVC-WP-ER and MVC-WP-SF by comparing them with var-
ious other algorithms, namely ConstructVC, MVC-2, R, MVC-MPL, and MVC-
L. We set M = 3 for both MVC-WP-ER and MVC-WP-SF, noting that M = 3
is a very small number of iterations of warning propagation.

Tables 2 and 4 and Fig. 2 compare these algorithms. In the misc networks
and web networks benchmark instance sets, both MVC-WP-ER and MVC-WP-
SF outperformed all other algorithms in terms of sizes of produced VCs. In the
brain networks benchmark instance set, both MVC-WP-ER and MVC-WP-SF
outperformed all other algorithms except ConstructVC. In the street networks



Table 3: Shows the number of vertices and edges of benchmark instances in the web
networks, street networks, and brain networks benchmark instance sets.

Instance |V | |E|
W

e
b

N
e
t
w
o
r
k
s

web-wikipedia-link-it 1,051,219 25,199,339
web-wikipedia-growth 898,367 4,468,005

web-BerkStan 5,121 8,345
web-italycnr-2000 176,055 2,336,551

web-uk-2005 127,716 11,643,622
web-Stanford 226,733 1,612,323

web-BerkStan-dir 552,353 5,674,493
web-google-dir 451,765 2,434,390

web-wikipedia2009 154,344 302,990
web-it-2004 424,893 6,440,816

web-wikipedia-link-fr 1,098,517 12,683,034
web-hudong 53,799 286,998

web-arabic-2005 102,515 1,560,020
web-baidu-baike 56,346 104,037
web-NotreDame 99,557 631,931

web-sk-2005 42,237 225,932
web-wiki-ch-internal 21,101 47,480

web-baidu-baike-related 126,607 710,562

S
t
r
e
e
t

N
e
t
w
o
r
k
s asia 2,642,989 3,032,404

germany 2,455,500 2,673,629
great-britain 1,284,868 1,383,591
luxembourg 23,196 24,710

belgium 460,536 503,521
netherlands 726,730 815,305

italy 1,783,377 1,942,410
europe 12,512,346 13,711,218

Instance |V | |E|

B
r
a
in

N
e
t
w
o
r
k
s

0025871-session-1-bg 738,598 168,617,323
0025872-session-2-bg 759,626 147,761,328
0025869-session-1-bg 679,760 134,979,814
0025876-session-1-bg 778,074 140,293,764
0025865-session-2-bg 705,588 155,118,679
0025868-session-1-bg 717,428 150,383,991
0025872-session-1-bg 746,316 166,528,410
0025864-session-2-bg 682,197 133,656,879
0025912-session-2 771,224 147,496,369

0025868-session-2-bg 717,420 158,562,090
0025869-session-2-bg 705,280 151,476,861
0025873-session-1-bg 636,430 149,483,247
0025870-session-2-bg 799,455 166,724,734
0025865-session-1-bg 725,412 165,845,120
0025889-session-2 731,931 131,860,075

0025876-session-2-bg 766,763 139,801,374
0025867-session-1-bg 735,513 145,208,968
0025874-session-2-bg 758,757 163,448,904
0025873-session-2-bg 682,580 140,044,477
0025889-session-1 694,544 144,411,722

0025870-session-1-bg 785,719 148,684,011
0025871-session-2-bg 724,848 170,944,764
0025864-session-1-bg 685,987 143,091,223
0025867-session-2-bg 724,276 154,604,919
0025878-session-1-bg 690,012 127,838,275
0025886-session-1 769,878 158,111,887
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Fig. 3: Compares sizes of VCs produced by MVC-WP-ER and MVC-WP-SF with those
produced by MVC-WP-1. The x-axis shows the relative suboptimality of MVC-WP
compared with MVC-WP-1. The y-axis shows the number of benchmark instances.
In the left half, for each point on the curve, its y coordinate shows the number of
benchmark instances with relative suboptimality smaller than its x coordinate. In the
right half, for each point on the curve, its y coordinate shows the number of benchmark
instances with relative suboptimality larger than its x coordinate. Larger areas under
the curves in the left half and smaller areas under the curves in the right half indicate
that MVC-WP-ER and MVC-WP-SF, respectively, produce VCs of sizes smaller than
MVC-WP-1.

benchmark instance set, both MVC-WP-ER and MVC-WP-SF outperformed
all other algorithms except for MVC-MPL. The reason may be that street net-
works are always planar and thus in general cannot be well modeled as ER or
SF graphs. Overall, MVC-WP-ER and MVC-WP-SF conclusively outperformed



Table 4: Compares sizes of VCs produced by MVC-WP-ER, MVC-WP-SF, and alter-
native algorithms on the web networks, street networks, and brain networks benchmark
instance sets. The numbers of vertex and edge of each benchmark instance are shown
in Table 3. The smallest sizes of VCs produced for each benchmark instance are high-
lighted.

Instance ConstructVC MVC-2 R MVC-L MVC-MPL MVC-WP-ER MVC-WP-SF

web-wikipedia-link-it 991,272 987,621 1,039,011 1,018,672 1,020,827 972,275 972,670
web-wikipedia-growth 914,746 926,530 966,410 950,741 940,302 909,910 909,989

web-BerkStan 5,542 5,469 5,605 5,567 5,726 5,463 5,469
web-italycnr-2000 99,645 99,609 110,559 104,272 103,153 97,844 97,932

web-uk-2005 127,774 127,774 127,774 127,774 127,774 127,774 127,774
web-Stanford 126,603 126,960 136,048 130,248 128,296 123,540 123,890

web-BerkStan-dir 290,206 291,277 320,384 310,483 304,623 285,593 285,934
web-google-dir 350,676 355,930 387,462 379,508 365,427 351,241 351,343

web-wikipedia2009 650,888 654,152 657,343 656,131 655,813 652,241 652,363
web-it-2004 415,408 415,083 415,915 415,533 415,042 414,835 414,972

web-wikipedia-link-fr 1,574,973 1,558,998 1,626,052 1,598,021 1,597,887 1,538,658 1,538,960
web-hudong 503,373 504,025 506,598 505,903 504,839 503,335 503,359

web-arabic-2005 114,504 114,743 115,161 114,999 115,004 114,721 114,727
web-baidu-baike 637,805 638,538 640,537 639,811 639,935 637,796 637,815
web-NotreDame 76,468 76,257 80,341 79,013 77,893 75,735 75,953

web-sk-2005 58,238 58,300 58,669 58,443 58,370 58,347 58,349
web-wiki-ch-internal 260,354 260,476 261,571 261,244 260,927 260,213 260,231

web-baidu-baike-related 144,388 146,588 151,689 149,957 148,749 145,272 145,249

asia 6,087,218 6,099,227 6,130,265 6,104,699 6,018,875 6,053,077 6,049,489
germany 5,822,566 5,834,966 5,864,005 5,841,507 5,768,621 5,792,165 5,789,947

great-britain 3,837,647 3,843,980 3,857,098 3,844,972 3,804,317 3,821,741 3,820,618
luxembourg 58,168 58,267 58,456 58,230 57,417 57,823 57,810

belgium 739,185 741,647 747,374 742,968 729,190 733,264 732,877
netherlands 1,133,606 1,141,977 1,147,202 1,141,786 1,131,859 1,127,358 1,125,978

italy 3,425,723 3,434,538 3,452,907 3,434,830 3,374,512 3,401,824 3,400,005
europe 25,903,178 25,968,573 26,104,371 25,983,279 25,589,132 25,743,670 25,730,398

0025871-session-1-bg 688,391 695,636 701,228 698,818 699,234 694,616 694,625
0025872-session-2-bg 706,691 714,407 720,128 717,692 718,017 713,557 713,599
0025869-session-1-bg 629,715 637,159 642,647 640,327 641,147 636,057 636,050
0025876-session-1-bg 712,322 721,476 728,763 725,679 726,560 720,332 720,404
0025865-session-2-bg 656,483 663,359 669,205 666,846 666,996 662,446 662,564
0025868-session-1-bg 662,749 670,415 676,703 674,029 674,729 669,473 669,452
0025872-session-1-bg 692,476 700,076 705,979 703,495 704,039 699,263 699,284
0025864-session-2-bg 631,361 638,668 644,392 641,875 642,737 637,833 637,831
0025912-session-2 716,154 724,000 730,201 727,577 727,982 723,070 723,165

0025868-session-2-bg 662,025 669,661 676,133 673,415 673,972 668,845 668,784
0025869-session-2-bg 651,656 659,116 665,348 662,796 662,931 658,201 658,171
0025873-session-1-bg 595,166 601,378 605,916 604,042 604,270 600,488 600,467
0025870-session-2-bg 735,348 744,205 751,736 748,478 749,706 743,052 743,103
0025865-session-1-bg 676,416 683,459 689,108 686,788 687,193 682,528 682,526
0025889-session-2 674,887 683,034 689,378 686,679 687,462 682,117 682,056

0025876-session-2-bg 701,544 710,627 717,965 714,784 715,793 709,579 709,604
0025867-session-1-bg 682,118 689,846 695,806 693,294 693,749 688,861 688,829
0025874-session-2-bg 701,559 709,752 716,330 713,553 714,320 708,796 708,786
0025873-session-2-bg 635,363 641,971 647,566 645,325 645,449 641,349 641,441
0025889-session-1 644,858 651,812 657,483 655,226 655,525 651,102 651,113

0025870-session-1-bg 721,906 730,773 738,123 734,922 736,193 729,761 729,805
0025871-session-2-bg 674,478 681,551 687,309 684,955 685,328 680,690 680,686
0025864-session-1-bg 634,702 642,146 647,884 645,431 646,130 641,119 641,058
0025867-session-2-bg 673,075 680,577 686,239 683,853 684,641 679,654 679,647
0025878-session-1-bg 636,617 644,044 650,351 647,661 648,109 643,237 643,190
0025886-session-1 713,597 721,617 728,101 725,332 726,009 720,641 720,638

their competitors. We also conducted further experiments to demonstrate the
usefulness of various individual steps of MVC-WP-ER and MVC-WP-SF.

To demonstrate the effectiveness of the message initialization step in MVC-
WP-ER and MVC-WP-SF, i.e., assigning messages to be zero with probability
p0 computed from random graph models, we compared MVC-WP-ER and MVC-
WP-SF with variants thereof in which p0 is always set to 1 in order to mimic
the message initialization in the standard warning propagation algorithm [20].
We refer to this variant as MVC-WP-1.

Figure 3 compares MVC-WP-ER and MVC-WP-SF with MVC-WP-1 on the
misc networks benchmark instance set. Both MVC-WP-ER and MVC-WP-SF
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Fig. 4: Compares sizes of VCs produced by MVC-WP-ER and MVC-WP-SF for differ-
ent values of M on the misc networks benchmark instance set.

significantly outperformed MVC-WP-1 in terms of sizes of produced VCs. These
results demonstrate the importance of our message initialization step.

To study the effect of M on MVC-WP-ER and MVC-WP-SF, we ran them
for different values of M . For both MVC-WP-ER and MVC-WP-SF with M ∈
{0, 1, . . . , 5}, Fig. 4 shows the sizes of the VC averaged over all benchmark in-
stances in the misc networks benchmark instance set. The average VC size de-
creases with increasing M . The results demonstrate the usefulness of warning
propagation iterations in MVC-WP-ER and MVC-WP-SF.

To demonstrate the effectiveness of Algorithm 2, we compared MVC-WP-ER
and MVC-WP-SF with and without the use of it on the web networks benchmark
instance set. MVC-WP-ER and MVC-WP-SF produced VCs of sizes that are
on average 0.51% and 1.0% smaller than their counterparts without the use of
Algorithm 2. These results demonstrate the importance of Algorithm 2.

Due to the fact that all algorithms are linear-time, all of them terminated
very quickly. Despite that MVC-WP-ER and MVC-WP-SF are slower than al-
ternative algorithms, over 80% of their runs terminated within 300ms, which
makes it difficult to measure the algorithms’ running times on a single bench-
mark instance. In addition, it took much longer time (a few hundred times
longer) to read input files from the hard disk than running these algorithms,
which makes it difficult to reliably count the numbers of benchmark instances
solved within a certain amount of time. For these reasons, it is difficult to have
reliable comparisons of running times of all algorithms. Therefore, we skip the
detailed comparison here, while this may be an interesting future work.

It is also interesting to compare the VCs produced by these linear-time-and-
space algorithms with the sizes of MVCs. Since the MVC problem is NP-hard,
it is elusive to find MVCs on the giant graphs in our previous used benchmark
instances. Therefore, we ran all algorithms on the benchmark instances with
provided solutions from the Second DIMACS Implementation Challenge5 [17].
Since the given solutions are for the maximum clique problem, we ran all algo-

5 http://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique/

http://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique/


Table 5: Compares sizes of MVCs and produced VCs by ConstructVC, MVC-2, MVC-
R, MVC-L, MVC-MPL, MVC-WP-ER, and MVC-WP-SF, respectively, on benchmark
instances with solutions from the Second DIMACS Implementation Challenge.

Graph Algorithm

Instance |V | MVC ConstructVC MVC-2 R MVC-L MVC-MPL MVC-ER MVC-SF

c-fat200-1 200 188 188 188 189 189 189 188 190
c-fat200-2 200 176 176 176 177 177 177 177 177
c-fat200-5 200 142 142 142 143 142 143 142 142
c-fat500-10 500 374 374 374 374 375 375 374 374
c-fat500-1 500 486 486 486 487 487 487 487 488
c-fat500-2 500 474 474 474 474 475 474 474 474
c-fat500-5 500 436 436 436 437 437 437 437 436

hamming10-2 1024 512 760 674 787 741 738 593 651
hamming6-2 64 32 45 40 44 40 39 34 41
hamming6-4 64 60 60 60 60 60 60 60 60
hamming8-2 256 128 155 185 188 182 178 141 160
hamming8-4 256 240 250 248 248 246 246 245 248
johnson16-2-4 120 112 112 112 112 112 112 112 112
johnson8-2-4 28 24 24 24 24 24 24 24 24
johnson8-4-4 70 56 56 60 61 60 60 58 56

keller4 171 160 162 164 163 163 163 163 161
p-hat300-1 300 292 295 294 295 294 294 295 295
p-hat300-2 300 275 279 285 286 286 284 280 282
p-hat300-3 300 264 270 273 278 278 277 273 271
p-hat500-1 500 491 494 494 494 494 494 493 495
p-hat500-2 500 464 470 479 482 480 481 472 473
san200-0 200 170 184 185 185 185 185 185 185
san200-0 200 130 155 155 159 156 154 154 155
san200-0 200 140 163 163 168 167 166 164 165
san200-0 200 156 169 169 173 172 171 171 172
sanr200-0 200 182 187 188 187 188 187 187 188

rithms on the complements of the graphs in these benchmark instances, since
the maximum clique problem on a graph is equivalent to the MVC problem on
the complement of the graph. The solutions are shown in Table 5. From the
table, we see that all linear-time-and-space algorithms produced VCs of similar
results. We also see that, the produced VCs have sizes very close to the sizes of
MVCs on all benchmark instances except hamming6-2 and hamming10-2.

6 Conclusions and Future Work

We developed MVC-WP, a warning propagation-based linear-time-and-space al-
gorithm that finds small minimal VCs for giant graphs. We empirically showed
that MVC-WP outperforms several other linear-time-and-space algorithms in
terms of sizes of produced VCs. We also empirically showed that the theoretical
underpinnings of MVC-WP significantly contribute to its success. These include
both the way in which MVC-WP performs message initialization by computing
p0 and the iterations of warning propagation. We also made secondary contribu-
tions in computing various special functions efficiently with numerical accuracy
sufficient for many AI applications. Future directions include applying similar
techniques to solving other fundamental combinatorial problems on giant graphs.
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9. Erdős, P., Rényi, A.: On random graphs I. Publicationes Mathematicae 6, 290–297
(1959)

10. Fang, Z., Li, C.M., Xu, K.: An exact algorithm based on MaxSAT reasoning for
the maximum weight clique problem. Journal of Artificial Intelligence Research 55,
799–833 (2016)

11. Filiol, E., Franc, E., Gubbioli, A., Moquet, B., Roblot, G.: Combinatorial opti-
misation of worm propagation on an unknown network. International Journal of
Computer, Electrical, Automation, Control and Information Engineering 1(10),
2931–2937 (2007)

12. Finch, S.R.: Mathematical Constants, Encyclopedia of Mathematics and its Ap-
plications, vol. 94. Cambridge University Press (2003)

13. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
14. Goyal, A., Lu, W., Lakshmanan, L.V.S.: SIMPATH: An efficient algorithm for in-

fluence maximization under the linear threshold model. In: the IEEE International
Conference on Data Mining. pp. 211–220 (2011)

15. Haynsworth, E.V., Goldberg, K.: Bernoulli and Euler polynomials—Riemann zeta
function. In: Abramowitz, M., Stegun, I.A. (eds.) Handbook of Mathematical Func-
tions: with Formulas, Graphs, and Mathematical Tables, pp. 803–819. Dover Pub-
lications, Inc. (1965)

16. Hiary, G.A.: Fast methods to compute the Riemann zeta function. Annals of Math-
ematics 174(2), 891–946 (2011)

17. Johnson, D.J., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge. American Mathematical Society (1996)

18. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103. Plenum Press, New York (1972)

19. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms.
Springer, 5th edn. (2012)
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