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Abstract

The k-vertex cover (k-VC) problem is to find a VC of car-
dinality no more than k on a given undirected graph, and the
k-weighted VC (k-WVC) problem is to find a VC of a weight
no more than k on a given vertex-weighted undirected graph.
In this paper, we generalize the Buss reduction, an impor-
tant kernelization technique for the k-VC problem, to the k-
WVC problem. We study its properties for the k-VC problem
and the k-WVC problem on surrogates of large real-world
graphs that are generated using the Erdős-Rényi model and
the Barabási-Albert model. We also argue that our study of
the Buss reduction bears important implications on the ker-
nelization of combinatorial problems that have been shown
to be reducible to WVC problems.

Introduction
Many interesting combinatorial problems in constraint rea-
soning, probabilistic reasoning, machine learning, opera-
tions research, and other research areas, are NP-hard. De-
spite many sophisticated search algorithms dedicated to
solving them, the search spaces still remain intractable for
large instances. Therefore, a polynomial-time procedure that
reduces the sizes of problem instances and identifies a com-
binatorial core can be beneficial as a preprocessing step.
Such a procedure is called a kernelization procedure, and
the combinatorial core is called a kernel.

Despite its importance, kernelization is understudied for
general combinatorial problems. Recent work presents a
kernelization method for combinatorial problems posed as
weighted constraint satisfaction problems (WCSPs) (Xu,
Kumar, and Koenig 2017). This method relies on first re-
ducing WCSPs to weighted vertex cover (weighted VC, aka
WVC) problems and then using kernelization methods for
the latter. A study of kernelization methods for (weighted)
VC problems is therefore important towards understanding
kernelization methods for general combinatorial problems.

(Weighted) VC problems have also been widely used to
study various other real-world and theoretical problems. For
example, they have been used in computer network secu-
rity (Filiol et al. 2007), in crew scheduling (Sherali and Rios
1984), and in the construction of phylogenetic trees (Abu-
Khzam et al. 2004). They have been used to prove the NP-
completeness of various problems, such as the set cover
problem and the dominating set problem (Korte and Vy-

gen 2012). WVC problems have also been used to identify
tractable subclasses of WCSPs using constraint composite
graphs (Kumar 2008a; 2008b; 2016).

Formally, the following problems are defined on an undi-
rected graph G = 〈V,E〉. A VC of G is defined as a set of
vertices S ⊆ V such that every edge in E has at least one of
its endpoint vertices in S. The k-VC problem is to compute a
VC ofGwith cardinality no more than k. If we assign a non-
negative weight w(vi) to each vertex vi ∈ V of G, then G
is called vertex-weighted and is denoted by G = 〈V,E,w〉.
The k-WVC problem on G is to find a VC of total weight
no more than k. The k-VC and k-WVC problems are NP-
complete (Karp 1972).

A general direction for tackling (weighted) VC prob-
lems is to use kernelization. Kernelization reduces the num-
ber of variables before exhaustive search is initiated. Ker-
nelization methods, such as the Nemhauser-Trotter reduc-
tion (Nemhauser and Trotter 1975) and the crown reduc-
tion (Abu-Khzam et al. 2007), are known for VC prob-
lems as well as WVC problems. However, these kerneliza-
tion methods have been experimentally studied only for VC
problems so far (Abu-Khzam et al. 2004; Dı́az, Petit, and
Thilikos 2006). The Buss reduction (due to S. R. Buss cited
in (Buss and Goldsmith 1993)) is a well-known kerneliza-
tion method for VC problems. It has been experimentally
studied for the k-VC problem on random graphs generated
with a preferential attachment model (Dı́az, Petit, and Thi-
likos 2006).

Random graph models have been used to model real-
world scenarios. For example, the Erdős-Rényi (ER)
model (Erdős and Rényi 1959) has been used to model social
and technological networks (Lerman, Yan, and Wu 2016;
Wu, Percus, and Lerman 2017), and the Barabási-Albert
(BA) model (Barabási and Albert 1999) has been used
to model software package dependency networks (Horváth
2012). A study of kernelization methods on ER and BA
graphs therefore has implications for their effectiveness and
properties on real-world graphs.

In this paper, we first generalize the Buss reduction to the
k-WVC problem. We then empirically study its properties
for the k-VC problem and the k-WVC problem on random
graphs generated using the ER and BA models. We make
several interesting observations and substantiate them using
theoretical arguments.



Algorithm 1: Buss reduction for the k-WVC problem
1 Function Buss(G = 〈V,E,w〉, k, V C)

Input: G: A vertex-weighted undirected graph to
find a k-WVC for.

Input: k: The maximum total weight of the VC.
Input and Output: V C: Vertices in the vertex

cover.
Output: K: A Buss reduction kernel.
Output: S: Status, i.e., what the Buss reduction

concludes about the existence of a
k-WVC.

2 if k < 0 then
3 return K = ∅, S = NO;
4 else if E = ∅ then
5 return K = ∅, S = YES;
6 else if ∃v ∈ V :

∑
u∈∂v w(u) > k then

7 V C := V C ∪ {v};
8 G′ := subgraph of G induced by V \ {v};
9 return Buss(G′, k − w(v), V C);

10 else
11 return K = G \ I(G), S = UNKNOWN;

The Buss Reduction for the k-WVC Problem
For the k-VC problem on an undirected graph G = 〈V,E〉,
the Buss reduction works as follows (Dı́az, Petit, and Thi-
likos 2006). It finds a vertex v ∈ V with more than k adja-
cent vertices, adds v into the VC, and removes v from the
graph. This results in a (k − 1)-VC problem. It applies this
procedure until no vertex can be removed or k vertices have
been removed. The remaining graph is the Buss reduction
kernel of the problem instance. The Buss reduction is cor-
rect, since, if v is not in the VC, then all of its adjacent ver-
tices have to be in the VC to cover all the edges incident on
v. This would make the size of the VC greater than k. The
time complexity of the Buss reduction is O(k · d · |V |).

Here, we extend the Buss reduction to the k-WVC prob-
lem. On a vertex-weighted undirected graphG = 〈V,E,w〉,
if there exists a vertex v ∈ V such that the total weight of all
its adjacent vertices is greater than k, then v must be selected
in the VC. If it is not in the VC, then all adjacent vertices
must be in the VC instead. This would result in a VC with a
weight greater than k. The details of the Buss reduction are
shown in Algorithm 1, where ∂v denotes the set of vertices
adjacent to v and I(G) denotes the set of isolated vertices
in G, i.e., vertices of degree zero. If the graph is represented
by an adjacency list, its time complexity is O( k

wm
· d · |V |),

where wm = minv∈V w(v) and d is the maximum degree
of all vertices. If the weights of all vertices in G are 1, Algo-
rithm 1 is exactly the Buss reduction for the k-VC problem.

Random Graph Models
We study the Buss reduction on two random graph mod-
els: the ER model (Erdős and Rényi 1959) and the BA
model (Barabási and Albert 1999). Both models are used
to generate surrogates for large real-world graphs.

The ER model (Erdős and Rényi 1959) generates graphs
in which each pair of vertices is connected by an edge with
the same given probability. The ER model has been used
to study real-world graphs, such as social and technologi-
cal networks (Lerman, Yan, and Wu 2016; Wu, Percus, and
Lerman 2017). Formally, the ER model has two parameters
n and p. It generates a graph using these two parameters as
follows: It first generates n vertices; then, for each each pair
of vertices, it connects them with probability p. We define
the connectivity parameter c ≡ np. Given this definition, we
can equivalently describe an ER model using n and c.

The BA model (Barabási and Albert 1999) uses a pref-
erential attachment mechanism to generate random graphs
whose vertices have degrees that follow the power law
P (k) ∝ k−3. It has been widely used to study real-world
graphs (Barabási 2016), such as software package depen-
dency networks (Horváth 2012). Formally, it has three pa-
rameters n, m0, and m. It generates a graph using these
parameters as follows: It starts with a complete graph with
m0 ≥ 2 vertices. It then adds new vertices, one at a time,
until the graph has n vertices. When it adds a new vertex
v, it connects v to m existing vertices. The probability with
which v to an existing vertex u is proportional to the degree
of u. In other words, v is attached to u with a preference that
is linear in the degree of u.

Experimental Evaluation
In our experiments, we implemented the Buss reduction in
C++. We generated two suites of instances. For each of these
instance suites, we generated 1, 000 graphs with 100, 500
and 1, 000 vertices each. For the first instance suite, we gen-
erated the graphs using the ER model with c = 8. For the
second instance suite, we generated the graphs using the BA
model withm = m0 = 2. For each graph in each of these in-
stance suites, we generated 3 instances by setting all weights
to the same constant 1, as well as according to exponential
distributions fe(x;λ) = λ exp(−λx) with rate parameters
λ = 1 and λ = 100. These distributions are referred to as
“constant”, “exponential-1” and “exponential-100”, respec-
tively. Setting all weights to be the constant 1 can be viewed
as following an exponential distribution with rate parameter
λ = +∞1: They both have zero variance.

We first study the status output of the Buss reduction. No
instance had an output of “YES”. This means that the Buss
reduction did not reduce any instance to an empty kernel if
a k-WVC exists. Figure 1 shows the fraction of instances η
that resulted in output “NO” for different vertex weight dis-
tributions. The remaining fraction resulted in output “UN-
KNOWN”. As k increases, there is a sudden drop in η within
a critical range of k. For the ER instances, as the rate param-
eter increases to +∞, the critical range of k shifts to the
left. For the BA instances, as the rate parameter increases to
+∞, the critical range of k becomes narrower, i.e., the drop
becomes steeper. In both cases, the observed behavior of
exponential-100 weights is very close to that of exponential-

1Mathematically an exponential distribution with rate parame-
ter λ = +∞ is not defined. Here, we use +∞ to represent ex-
tremely large real numbers.
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Figure 1: Shows the fraction of instances η for which the Buss reduction outputs “NO” versus k/W for different weight
distributions, where W is the total weight of the vertices in the graph. Only instances with 1,000 vertices are used here. The
blue, orange, and green curves represent graphs that have constant, exponential-1, and exponential-100 weights, respectively.
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Figure 2: Shows the fraction of instances η for which the Buss reduction outputs “NO” versus k/W for graphs of different
sizes. Only instances with exponential-1 weights are used here. The blue, orange, and green curves represent graphs that have
100, 500, and 1,000 vertices, respectively.

1 weights. This is surprising since exponential-100 weights
have a low variance of 10−4. Therefore, its curve was ex-
pected to be closer to that of the constant weight.

Figure 2 shows the fraction of instances η that output
“NO” for different graph sizes. As the number of vertices in-
creases, the critical range of k narrows and moves to the left.
The narrowing may be explained using the argument that
random graphs of infinite size commonly exhibit asymptotic
properties more clearly than their finite counterparts: The
output of the Buss reduction becomes more certain for every
k as the graph size increases. The moving to the left may be
explained by the fact that the number of vertices that can be
reduced by the Buss reduction increases only sublinearly in
the graph size for both the ER and BA models.

In further experiments, we use the reduction rate and the
component reduction rate to measure the effectiveness of the
Buss reduction. The reduction rate is defined as the ratio of
the total weight of the vertices removed by the Buss reduc-
tion and the total weight of all vertices of the input graph.
The component reduction rate is defined as one minus the
ratio of the number of vertices in the largest connected com-

ponent of the kernel and the number of vertices in the input
graph. The larger the rates are, the more effective the Buss
reduction is. Each measurement has its own advantages: The
reduction rate measures how much the problem size has
been reduced, and the component reduction rate measures
how the hardness of the problem has been reduced—the time
complexity of solving the k-WVC problem is exponential in
the size of the maximum connected component.

Figures 3 and 4 show the average reduction rates and the
average component reduction rate over instances that output
“UNKNOWN”. For the ER instances, both rates are almost
zero when k/W is greater than a threshold. For the BA in-
stances, both rates decrease when k/W increases.

Analysis
The shape of the curve of the reduction rates can be ex-
plained as follows. Let Fd(·) be the cumulative distribution
function (CDF) of the degrees of vertices. For the k0-VC
problem, let the Buss reduction stop after removing k1 ≤ k0

vertices. For any k, if the Buss reduction finds a vertex to re-
move for the k-VC problem, it invokes the (k−1)-VC prob-
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(b) The BA Instances

Figure 3: Shows the average reduction rate as a function of k/W for different weight distributions. Only instances with 1,000
vertices are used here. The blue, orange, and green curves represent graphs that have constant, exponential-1, and exponential-
100 weights, respectively.
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Figure 4: Shows the average component reduction rate as a function of k/W for different weight distributions. Only instances
with 1,000 vertices are used here. The blue, orange, and green curves represent graphs that have constant, exponential-1, and
exponential-100 weights, respectively.

lem. Therefore, the reduction rate is equal to k0−k1

N , where
N is the number of vertices. On the other hand, if the num-
ber of neighbors of vertices did not change from iteration
to iteration, the reduction rate can also be approximated as
1−Fd(k1), since Fd(k1) is the fraction of vertices that have
degrees less or equal to k1. Therefore, we can estimate k1

by solving

1− Fd(k1) =
k0 − k1

N
(1)

for k1. Figure 5 visualizes the solution of Equation (1). The
intersection points of the solid and dashed curves represent
the solutions of Equation (1) for the ER and BA graphs. If
the value of k0 increases, the dashed curve moves to the right
and the reduction rate decreases, as shown in Figure 6. Now,
we let N approach∞ to study the asymptotic behavior. In-
finite ER graphs have Poisson vertex degree distributions,
and infinite BA graphs have power-law vertex degree distri-
butions. Since power-law distributions have fatter tails than
Poisson distributions, the reduction rate drops faster for ER
graphs than for BA graphs. For large k0’s, the reduction rates
become 0 for both kinds of graphs.

Our analysis can be generalized to the k-WVC problem.
Let the total weight of the vertices adjacent to a vertex v be
Ω(v) =

∑
u∈∂v w(u). The CDF of Ω(v) is

FΩ(ω) =

∞∑
j=1

[
fd(j)

∫
w1+···+wj≤ω

j∏
i=1

fw(wi) dwi

]
, (2)

where fd(·) is the probability density function (PDF) of the
degrees of vertices, and fw(·) is the PDF of the weights. To
be consistent with our instance suites, we set fw(·) to be
the PDF of an exponential distribution fe(·;λ). The sum of
exponential independent and identically distributed random
variables has a Gamma distribution. Therefore, Equation (2)
can be written as

FΩ(ω) =

∞∑
j=1

[
fd(j)

∫ ω

0

γ(j, λt)

(j − 1)!
dt

]
. (3)

Here, γ(·, ·) is the incomplete Gamma function. For the k0-
WVC problem, let the Buss reduction stop after removing
vertices of total weight k1 ≤ k0. An argument similar to the
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Figure 5: Shows the schematic plot for solving Equation (1)
for some k0. Here N = 1, 000. The solid curves represent
the left-hand side of Equation (1) of the ER and BA graphs,
respectively. The dashed curve represent one possibility of
the right-hand side of Equation (1).
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Figure 6: Shows the plots of the reduction rates as a function
of k0/N obtained by solving Equation (1) for N = 1, 000
numerically for ER graphs with parameter c = 8 and BA
graphs with parameters m0 = m = 2.

k-VC problem shows that

1− FΩ(k1) =
k0 − k1

N〈w〉
, (4)

where 〈w〉 is the average vertex weight. Equation (4) is
similar to Equation (1), admitting similar solutions to those
shown in Figure 6. This is consistent with our experimental
results.

Conclusions
We generalized the Buss reduction to the k-WVC problem.
We then empirically studied its properties on two important
random graph models: the ER model and the BA model. Ex-
perimentally, we showed that the Buss reduction typically
does not reduce ER or BA graphs to empty kernels if a k-
WVC exists. We showed that the fraction of instances for
which the Buss reduction concludes the non-existence of
a k-WVC drops significantly when k is within the critical
range. We also showed that, by changing constant weights
to weights sampled by exponential distributions, this critical
range shifts to larger k’s for the ER model and broadens for
the BA model. We showed that, as the graph size increases,
the critical range narrows and shifts to smaller k’s. Further
experiments on the reduction rates were substantiated with

theoretical arguments. We showed that the reduction rate and
the component reduction rate drop to near zero quickly for
ER instances and more gradually for BA instances. Because
the ER and BA models are characteristic of many real-world
graphs and because many other combinatorial problems are
reducible to (weighted) VC problems, our study of the Buss
reduction has broader implications on kernelization of com-
binatorial problems.
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Horváth, Á. 2012. The software package dependency net-
works of some Linux distributions. In IEEE International
Conference on Nonlinear Science and Complexity, 235–238.
Karp, R. M. 1972. Reducibility among combinatorial prob-
lems. In Complexity of Computer Computations. Plenum
Press, New York. 85–103.
Korte, B., and Vygen, J. 2012. Combinatorial Optimization:
Theory and Algorithms. Springer, 5th edition.
Kumar, T. K. S. 2008a. A framework for hybrid tractabil-
ity results in Boolean weighted constraint satisfaction prob-
lems. In the International Conference on Principles and
Practice of Constraint Programming, 282–297.



Kumar, T. K. S. 2008b. Lifting techniques for weighted
constraint satisfaction problems. In the International Sym-
posium on Artificial Intelligence and Mathematics.
Kumar, T. K. S. 2016. Kernelization, generation of bounds,
and the scope of incremental computation for weighted con-
straint satisfaction problems. In the International Sympo-
sium on Artificial Intelligence and Mathematics.
Lerman, K.; Yan, X.; and Wu, X.-Z. 2016. The “majority
illusion” in social networks. PLoS ONE 11(2).
Nemhauser, G. L., and Trotter, L. E. 1975. Vertex pack-
ings: Structural properties and algorithms. Mathematical
Programming 8(1):232–248.
Sherali, H. D., and Rios, M. 1984. An air force crew alloca-
tion and scheduling problem. The Journal of the Operational
Research Society 35(2):91–103.
Wu, X.-Z.; Percus, A. G.; and Lerman, K. 2017. Neighbor-
neighbor correlations explain measurement bias in net-
works. Scientific Reports 7(1):5576.
Xu, H.; Kumar, T. K. S.; and Koenig, S. 2017. The
Nemhauser-Trotter reduction and lifted message passing for
the weighted CSP. In the International Conference on In-
tegration of Artificial Intelligence and Operations Research
Techniques in Constraint Programming, 387–402.


