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Summary

• For an NP-hard problem, it is desirable to have an algorithm that
reduces problem sizes in polynomial time (but does not necessarily
solve the problem). This is called a kernelization method.

• The Buss reduction has been known as a kernelization method for the
k-vertex cover (k-VC) problem.

• We explicitly generalize it to the k-weighted vertex cover (k-WVC)
problem and empirically study its properties.
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Motivation: the k-Weighted Vertex Cover (k-WVC) Problem

The k-WVC problem: Find a vertex cover with a weight no more than k on a
vertex-weighted undirected graph.

Applications:

• Combinatorial auctions (Sandholm 2002)
• Kidney exchange (McCreesh et al. 2017)
• Error correcting code (McCreesh et al. 2017)
• Solving and understanding weighted constraint satisfaction
problems (Kumar 2008a, 2016, 2008b)
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Motivation: Kernelization and the Buss Reduction

• The k-WVC problem is known to be NP-hard.
• To solve such a problem, an algorithm that reduces the size of the
problem in polynomial time is desirable.

• A kernelization method is one such algorithm.
• The Buss reduction is one kernelization method for the k-VC problem.
• Can we generalize the Buss reduction to the k-WVC problem?
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The k-WVC Problem

Given a vertex-weighted undirected graph G = 〈V, E,w〉,

• A vertex cover is a set S ⊆ V such that every edge in G has at least one
endpoint vertex in S.

• The k-WVC problem asks for a vertex cover S with a weight no more
than k on G, i.e.,

∑
v∈Sw(v) ≤ k.

• The k-VC problem is equivalent to the k-WVC problem with all weights
equal to 1.
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The k-WVC Problem: Example

Example: (k = 4)
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Red vertices are those vertices in the vertex cover.
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The Buss Reduction for the k-VC problem

Intuition: If a vertex has a degree larger than k, it has to be
in the vertex cover. Otherwise, all its neighbors have to be
in the vertex cover and result in a vertex cover larger than k.

k = 3
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The Buss Reduction for the k-VC problem

The Buss reduction for the k-VC problem on G (Buss et al. 1993):

• Find a vertex v with a degree larger than k and add it to the vertex
cover.

• Remove vertex v from G, and the remaining problem is the (k− 1)-VC
problem on the resulting graph.

• Repeat the steps above until k < 0 or no vertex can be added to the
vertex cover.
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The Buss Reduction for the k-WVC problem

Intuition: If a vertex whose neighbors have a total weight
larger than k, it has to be in the vertex cover. Otherwise, all
its neighbors have to be in the vertex cover and result in a
vertex cover with weight larger than k.
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k = 5
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The Buss Reduction for the k-WVC problem

The Buss reduction for the k-WVC problem on G:

• Find a vertex v whose neighbors have a total weight larger than k and
add it to the vertex cover.

• Remove vertex v from G, and the remaining problem is the
(k− w(v))-WVC problem on the resulting graph.

• Repeat the steps above until k < 0 or no vertex can be added to the
vertex cover.
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Benchmark Instances

We generated 18 benchmark instance sets with 1,000 benchmark instances
each, by using one from each of the following properties:

• Random graph model: Erdős-Rényi (ER) and Barabási-Albert (BA)
• ER: Connectivity c = 8
• BA: m = m0 = 2

• Probabilistic distribution of vertex weights: constant, exponential with
λ = 1 and λ = 100

• “Constant distribution” can be somehow viewed as the exponential
distribution with λ → +∞ since both of them have zero variance.

• Note that the exponential distribution with λ = 100 has a very low
variance.

• Number of vertices: 1,000, 500, and 100
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No Benchmark Instance Solved

• Experiments showed that no benchmark instance was solved directly
using the Buss reduction.

• The Buss reduction typically does not reduce ER or BA graphs to
empty kernels if a k-WVC exists.
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(a) The ER Instances
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(b) The BA Instances

The fraction of instances η for which the Buss reduction outputs “NO” (no vertex
cover with weight not larger than k exists) versus k/W for different weight
distributions, where W is the total weight of the vertices in the graph. Only
instances with 1,000 vertices are used here. The blue, orange, and green curves
represent graphs that have constant, exponential-1, and exponential-100 weights,
respectively.
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(a) The ER Instances
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(b) The BA Instances

Observations:

• By changing constant weights to weights sampled by exponential
distributions, the critical range (where the phase transition takes
place) shifts to larger k’s for the ER model and broadens for the BA
model.
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(b) The BA Instances

The fraction of instances η for which the Buss reduction outputs “NO” (no vertex
cover with weight not larger than k exists) versus k/W for graphs of different
sizes. Only instances with exponential-1 weights are used here.

Observation: As the graph size increases, the critical range narrows and
shifts to smaller k’s.
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Average reduction rate measures how much the problem size has been
reduced. (average number of vertices removed divided by number of
vertices in the input graph)
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(b) The BA Instances

The average reduction rate as a function of k/W for different weight distributions.
Only instances with 1,000 vertices are used here.
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Average component reduction rate measures how much the hardness of
the problem has been reduced. (one minus the ratio of the number of
vertices in the largest connected component of the kernel to the number
of vertices in the input graph)
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(a) The ER Instances
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(b) The BA Instances

Shows the average component reduction rate as a function of k/W for different
weight distributions. Only instances with 1,000 vertices are used here.
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Analytical Approximation of Average Reduction Rate

Consider the k-VC problem on a graph with N vertices.

• The Buss reduction starts with k = k0.
• The Buss reduction stops when k = k1.

If we assume that the number of neighbors of vertices does not change
from iteration to iteration, then we have

1− Fd(k1) =
k0 − k1
N

,

where Fd(k1) is the fraction of vertices that have degrees less or equal to k1.
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Analytical Approximation of Average Reduction Rate

Similar argument for the k-WVC problem on a graph with N vertices, we
have

1− FΩ(k1) =
k0 − k1
N〈w〉

,

where

• 〈w〉 is the average vertex weight, and
• FΩ(·) is the CDF of Ω(v) =

∑
u∈∂v w(u).
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The plots of the reduction rates as a function of k0/N obtained by solving
1− Fd(k1) = k0−k1

N , for N = 1, 000 numerically for ER graphs with parameter c = 8
and BA graphs with parameters m0 = m = 2.
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Conclusion

• We generalized the Buss reduction to the k-WVC problem.
• We empirically studied it on ER and BA random graphs:

• The Buss reduction typically does not reduce ER or BA graphs to empty
kernels if a k-WVC exists.

• By changing constant weights to weights sampled by exponential
distributions, the critical range shifts to larger k’s for the ER model and
broadens for the BA model.

• As the graph size increases, the critical range narrows and shifts to
smaller k’s.

• The reduction rate and the component reduction rate drop to near zero
quickly for ER instances and more gradually for BA instances.
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