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Abstract. The weighted constraint satisfaction problem (WCSP) oc-
curs in the crux of many real-world applications of operations research,
artificial intelligence, bioinformatics, etc. Despite its importance as a
combinatorial substrate, many attempts for building an efficient WCSP
solver have been largely unsatisfactory. In this paper, we introduce a
new method for encoding a (Boolean) WCSP instance as an integer lin-
ear program (ILP). This encoding is based on the idea of the constraint
composite graph (CCG) associated with a WCSP instance. We show that
our CCG-based ILP encoding of the Boolean WCSP is significantly more
efficient than previously known ILP encodings. Theoretically, we show
that the CCG-based ILP encoding has a number of interesting proper-
ties. Empirically, we show that it allows us to solve many hard Boolean
WCSP instances that cannot be solved by ILP solvers with previously
known ILP encodings.

1 Introduction

The weighted constraint satisfaction problem (WCSP) is a combinatorial opti-
mization problem. It is a generalization of the constraint satisfaction problem
(CSP) in which the constraints are no longer “hard.” Instead, each tuple in a
constraint—i.e., an assignment of values to all variables in that constraint—is
associated with a non-negative weight (sometimes referred to as “cost”). The
goal is to find a complete assignment of values to all variables from their re-
spective domains such that the total weight is minimized [2], called an optimal
solution.

More formally, the WCSP is defined by a triplet 〈X ,D, C〉, where X =
{X1, X2, . . . , XN} is a set of N variables, D = {D(X1), D(X2), . . . , D(XN )}
is a set of N domains with discrete values, and C = {C1, C2, . . . , CM} is a set
of M weighted constraints. Each variable Xi ∈ X can be assigned a value in its
associated domain D(Xi) ∈ D. Each constraint Ci ∈ C is defined over a certain
subset of the variables S(Ci) ⊆ X , called the scope of Ci. Ci associates a non-
negative weight with each possible assignment of values to the variables in S(Ci).
The goal is to find a complete assignment of values to all variables in X from
their respective domains that minimizes the sum of the weights specified by each
constraint in C [2]. This combinatorial task can equivalently be characterized by
having to compute

arg min
a∈A(X )

∑
Ci∈C

ECi(a|S(Ci)), (1)
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where A(X ) represents the set of all |D(X1)| × |D(X2)| × . . . × |D(XN )| com-
plete assignments to all variables in X . a|S(Ci) represents the projection of a
complete assignment a onto the subset of variables in S(Ci). ECi is a function
that maps each a|S(Ci) to its associated weight in Ci. The Boolean WCSP is
the WCSP with only variables of domain size 2, i.e., ∀X ∈ X : |D(X)| = 2. It is
representationally as powerful as the WCSP.

There are many ways to solve a given WCSP instance. The state-of-the-art
methods include best-first AND/OR search [10] and branch-and-bound algo-
rithms that exploit soft arc consistencies [4]. Unfortunately, none of these WCSP
solvers make use of the power of integer linear programming (integer LP, ILP)
solvers, such as the Gurobi Optimizer [3] and lp solve [1]. ILP solvers are highly
optimized and are extensively used for solving problems in operations research.
An efficient ILP encoding of the WCSP would therefore create an important
nexus between constraint programming and operations research.

An ILP encoding of the WCSP can be borrowed from the probabilistic reason-
ing community. Here, the WCSP arises as the max-a-posteriori (MAP) problem.1

Although this ILP encoding is popularly used in probabilistic reasoning [5, Sec-
tion 13.5], it does not scale to large instances since it creates an unwieldy number
of variables and constraints. In the rest of the paper, we refer to this ILP encod-
ing as the “direct” ILP encoding.

In this paper, we introduce a new ILP encoding of the WCSP that is based
on the idea of the constraint composite graph (CCG) [7–9]. We refer to this
encoding as the “CCG-based” ILP encoding. We compare it with the direct ILP
encoding in [5, Section 13.5] for the Boolean WCSP. We first derive and compare
the theoretical bounds on the number of variables, the number of constraints and
the number of variables in each constraint in the ILPs generated by these two
ILP encodings. We then experimentally compare the efficiency of solving the
ILPs generated by the two ILP encodings. Finally, we establish an important
theoretical property of the CCG-based ILP encoding.

2 ILP Encodings of the WCSP

In this section, we describe two methods to encode a given WCSP instance
as an ILP: One is the direct ILP encoding adapted from [5, Section 13.5] and
the other one is our proposed CCG-based ILP encoding. For notational con-
venience, throughout this section, we consider the WCSP instance B = 〈X =
{X1, X2, . . . , XN},D = {D(X1), D(X2), . . . , D(XN )}, C = {C1, C2, . . . , CM}〉.

2.1 Direct ILP Encoding

For each C ∈ C and a ∈ A(S(C)), we introduce an ILP variable qCa . Here,
A(S(C)) is the set of all assignments of values to variables in constraint C

1 A MAP problem instance on a probabilistic graphic model, such as a Belief Network,
can be formulated as a WCSP instance by taking the negative logarithm on the
individual probabilities.



(therefore |A(S(C))| =
∏

X∈S(C) |D(X)|). qCa is either 0 or 1: If qCa = 1, then

the assignment a to the variables in C is part of the to-be-determined optimal
solution a∗, i.e., a∗|S(C) = a; otherwise it is not. The direct ILP encoding of B
is

minimize
qCa :qCa ∈q

∑
C∈C

∑
a∈A(S(C))

wC
a qCa (2)

s.t. qCa ∈ {0, 1} ∀qCa ∈ q (3)∑
a∈A(S(C))

qCa = 1 ∀C ∈ C (4)

∑
a∈A(S(C)):a|S(C)∩S(C′)=s

qCa =
∑

a′∈A(S(C′)):a′|S(C)∩S(C′)=s

qC
′

a′ ∀C,C′ ∈ C and (5)

s ∈ A(S(C) ∩ S(C′)),

where q = {qCa | C ∈ C ∧ a ∈ A(S(C))}, wC
a denotes the weight of assignment a

specified by constraint C, and a|S(C) ∩ S(C ′) is the projection of the complete
assignment a onto the set of common variables in C and C ′. The cardinality of
q is

∑
C∈C

∏
X∈S(C) |D(X)|. Here,

– Equation (3) represents the ILP constraints that enforce the Boolean prop-

erty for all qCa ’s. It consists of
∑

C∈C
∏

X∈S(C) |D(X)| = O
(
|C|D̂Ĉ

)
ILP

constraints, where Ĉ = maxC∈C |S(C)| and D̂ = maxX∈X |D(X)|.
– Equation (4) represents the ILP constraints that enforce a unique assign-

ment of values to variables in each WCSP constraint. It consists of |C| ILP

constraints, each of which has |A(S(C))| =
∏

X∈S(C) |D(X)| = O
(
D̂Ĉ
)

variables.
– Equation (5) represents the ILP constraints which enforce that every two

assignments in two WCSP constraints must be consistent on their shared

variables. It consists of O
(
|C|2D̂Ĉ

)
ILP constraints. Each of these ILP con-

straints has O
(
D̂Ĉ
)

variables.

Therefore, if B is a Boolean WCSP instance, the direct ILP encoding has

|q| = O
(
|C|D̂Ĉ

)
= O

(
|C|2Ĉ

)
variables and O

(
|C|2D̂Ĉ

)
= O

(
|C|22Ĉ

)
ILP

constraints. Each of these ILP constraints has O
(
D̂Ĉ
)

= O
(

2Ĉ
)

variables.

2.2 CCG-Based ILP Encoding

The CCG [7–9] is a combinatorial structure associated with the WCSP. It pro-
vides a unifying framework for simultaneously exploiting the graphical structure
of the variable interactions in the WCSP as well as the numerical structure of
the constraints in it. The task of solving the WCSP can be reformulated as the
task of finding a minimum weighted vertex cover (MWVC) (namely the MWVC
problem) on its associated CCG [7–9]. CCGs can be constructed in polynomial



time and are always tripartite [7–9]. A subclass of the WCSP has instances with
bipartite CCGs. This subclass is tractable since an MWVC can be found in
polynomial time on bipartite graphs using a staged maxflow algorithm [6]. The
CCG also enables the use of kernelization methods for the MWVC problem,
such as the Nemhauser-Trotter reduction, for solving the WCSP [14]. Empir-
ically, the min-sum message passing algorithm often produces better solutions
for the MWVC problem on the CCG than directly on the WCSP [14].

We can encode a WCSP instance as an ILP after transforming it to an
equivalent MWVC problem instance on its CCG G = 〈V,E,w〉. The resulting
CCG-based ILP encoding is

minimize
xi:vi∈V

|V |∑
i=1

wixi (6)

s.t. xi ∈{0, 1} ∀ vi ∈ V (7)

xi + xj ≥1 ∀ (vi, vj) ∈ E, (8)

where variable xi represents the presence of vi in the MWVC, i.e., xi = 1 and
xi = 0 indicate that vi is and is not in the MWVC, respectively [13]. The numbers
of ILP variables and constraints are determined by the CCG. We now assume
that B is a Boolean WCSP instance. We can compute the number of vertices
and edges in the CCG by following the CCG construction procedure in [7].2 A
constraint C can be represented by the multivariate polynomial

∑
T∈P(S(C))

[
cT
∏
X∈T

X

]
, (9)

where P(S(C)) is the power set of S(C) and the cT ’s are constants. The CCG
gadget corresponding to term cT

∏
X∈T X has O(|T |) vertices and edges. The

CCG gadget corresponding to constraint C therefore has an upper bound of

O

 ∑
T∈P(S(C))

|T |

 = O

|S(C)|∑
|T |=0

(
|S(C)|
|T |

)
|T |

 = O
(

2|S(C)|−1|S(C)|
)

(10)

vertices and edges. Therefore, if B is a Boolean WCSP instance, the CCG has

O
(
|C|2ĈĈ

)
vertices and edges constituting the ILP variables (Eq. (7)) and

constraints (Eq. (8)), respectively, with each of these ILP constraints having at
most 2 variables.

2.3 Comparison

We compare various parameters of the two ILP encodings for the Boolean WCSP
in Table 1. For any non-trivial Boolean WCSP instances, the CCG-based ILP
encoding has a huge advantage over the direct ILP encoding with respect to the

2 As shown in [8], our techniques can also be generalized to the WCSP with variables
of domain sizes larger than 2. However, for a proof of concept, this paper focuses on
the Boolean WCSP.



Encoding Direct CCG-Based

Number of Variables O
(
|C|2Ĉ

)
O
(
|C|2ĈĈ

)
Number of Constraints O

(
|C|22Ĉ

)
O
(
|C|2ĈĈ

)
Number of Variables per Constraint O

(
2Ĉ
)

≤ 2

Table 1: Shows the numbers of variables, constraints, and variables per constraint
in the two ILP encodings of Boolean WCSP instance B = 〈X ,D, C〉.

number of variables per constraint. This is true even if Ĉ is bounded because,
in the direct ILP encoding, the number of variables in an ILP constraint corre-
sponding to a WCSP constraint C in Eq. (4) is 2|S(C)| ≥ 2. For the number of
constraints, while different values of the parameters lead to different trade-offs,
the most interesting real-world applications of the WCSP have a large number
|C| of constraints and a bounded arity Ĉ of the individual constraints. Under such
assumptions, the CCG-based ILP encoding is more advantageous than the direct
ILP encoding with respect to the number of constraints as well. For the number
of variables, the CCG-based ILP encoding loses by a factor of Ĉ. However, as
argued before, in many real-world applications, Ĉ is bounded, and therefore the
number of variables for both ILP encodings are of the same order. In general,
when Ĉ is bounded, the CCG-based ILP encoding retains the same order of the
number of variables as the direct ILP encoding and significantly wins on the
number of constraints and the number of variables per constraint.

3 Experimental Evaluation

In this section, we experimentally evaluate the efficiencies of solving the Boolean
WCSP using the two ILP encodings. We refer to the two algorithms that use
these ILP encodings as the direct algorithm and the CCG-based algorithm.

In our experiments, the benchmark instances were generated from the UAI
2014 Inference Competition3. Here, MAP inference queries with no evidence on
the PR and MMAP benchmark instances can be formulated as Boolean WCSP
instances by first taking the negative logarithms of the probabilities in each
factor and then normalizing them. The experiments were performed on those
160 benchmark instances with only Boolean variables. We set a running time
limit of 120 seconds for each algorithm on each benchmark instance.

We used the Gurobi Optimizer version 7.0.2 [3] as the ILP solver. All de-
fault settings of the Gurobi Optimizer were kept except that it was configured
to use only one CPU thread. The ILP encoding procedures and the CCG con-
struction algorithm were implemented in C ++ and were compiled by the GNU
Compiler Collection (GCC) 6.3.0 with the “-O3” option. We used the Boost

3 http://www.hlt.utdallas.edu/~vgogate/uai14-competition/index.html
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Termination Status Total CCG-Based Only Direct Only Neither Both

Number of Benchmark Instances 160 23 5 14 118

Table 2: Shows the number of benchmark instances on which the direct and
CCG-based algorithms terminated within a running time limit of 120 seconds.
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Fig. 1: Compares the efficiencies of the direct and CCG-based algorithms on the
benchmark instances on which both algorithms terminated within a running
time limit of 120 seconds. Each point represents a benchmark instance. The
x and y coordinates of each point show the running times of the CCG-based
and direct algorithm on its corresponding benchmark instance, respectively. The
dashed diagonal line represents equal running times. Points above and below
this line are colored red and blue, respectively. Red and blue points represent
benchmark instances on which the CCG-based and direct algorithm terminated
more quickly, respectively. There are 110 red points and 8 blue points.

graph library [11] to implement the graph representations and operations. We
performed our experiments on a GNU/Linux workstation with an Intel Xeon
processor E3-1240 v3 (8MB Cache, 3.4GHz) and 16GB RAM.

Table 2 shows the number of benchmark instances on which both algorithms
terminated within the running time limit. The number of benchmark instances
on which only the CCG-based algorithm terminated is much larger than the
number of benchmark instances on which only the direct algorithm terminated.
On 118 out of 160 benchmark instances, both terminated within the running
time limit. However, even in this category, the CCG-based algorithm was much
more efficient.

Figure 1 compares the efficiencies of the two algorithms on the 118 benchmark
instances on which both of them terminated within the running time limit.
The CCG-based algorithm was more efficient on 110 benchmark instances (red
points), and the direct algorithm was more efficient on 8 benchmark instances



(blue points). Most red points are far from the dashed diagonal line, meaning
that the gap between the running times of the two algorithms was very large
for those benchmark instances on which the CCG-based algorithm was more
efficient. On the other hand, all blue points are close to the dashed diagonal
line, meaning that the direct algorithm only marginally outperformed the CCG-
based algorithm on these benchmark instances in terms of running time.

4 A Theoretical Property of CCG-Based ILP Encoding

Since an ILP itself can be interpreted as a WCSP instance with an infinite weight
marking the violation of an ILP constraint and unary constraints representing
the ILP objective function, the concept of the CCG is well defined for ILPs. It
can be constructed in polynomial time for an ILP and can be used to generate
the CCG-based ILP encoding of the given ILP. A desirable property of the
CCG-based ILP encoding is therefore its ability to preserve the integrality of
the vertices of the feasible region of its LP relaxation.

ILPs can be relaxed to LPs by removing all integrality constraints on their
variables. LPs have convex feasible regions and can therefore be solved efficiently
(in polynomial time). If the feasible region of the LP relaxation of an ILP has
only integer vertices (equivalent to an ILP having a totally unimodular (TUM)
constraint matrix [12]), an optimal solution of the LP also yields an optimal
solution of the ILP.

An ILP can be viewed as a WCSP instance as follows. Each ILP constraint
translates to a WCSP constraint with weights of values zero or infinity. The ILP
objective function translates to a set of unary WCSP constraints. The CCG-
based ILP encoding of an ILP produces a new ILP. If the original ILP has only
integer vertices in the feasible region of its LP relaxation, it is desirable for the
new ILP to also have the same property. This would mean that, if the original
ILP is solvable through LP relaxation, the new ILP is also solvable through LP
relaxation. In this section, we show that this property of the CCG-based ILP
encoding in fact holds for an important subclass of such ILPs, namely, ILPs that
model MWVC problem instances on bipartite graphs.

The MWVC problem on a given vertex-weighted graph G = 〈V,E,w〉 is
formulated as an ILP of the same form of Eqs. (6) to (8), where we simply
associate a 0/1 variable xi with each vertex vi ∈ V of non-negative weight wi

indicating the presence of vi in the MWVC. If G is bipartite, its constraint matrix
is TUM. Therefore, the LP relaxation of this ILP has only integer vertices in
its feasible region [12]. We can formulate this ILP as a WCSP instance with the
two types of constraints shown in Table 3.

Now we show that the CCG created for the MWVC problem on any given
bipartite graph is also bipartite, which establishes that the LP relaxation of the
CCG-based ILP encoding has only integer vertices in its feasible region. Consider
an edge (vi, vj) ∈ E. The CCG gadget that represents the constraint of covering
this edge involves auxiliary vertices A and A′ [7]. The CCG gadget itself has
the edges (vi, A), (A,A′) and (A′, vj). If the original graph is bipartite, then



xi

xj
0 1

0 +∞ 0

1 0 0

(a) The binary constraint that repre-
sents the requirement of covering each
edge (vi, vj) ∈ E

xi 0 1

Value 0 wi

(b) The unary constraint for each ver-
tex vi that represents a term in the ob-
jective function of minimizing the total
weight of the vertex cover

Table 3: Shows the two types of WCSP constraints for the MWVC problem.

its vertices can be colored using either of two colors, red and blue, such that
every edge connects a red vertex and a blue vertex. Without loss of generality,
we assume that vi is colored red and vj is colored blue. We then color A blue
and A′ red. Such a coloring of the vertices ensures that the edges of the gadgets
also always connect a red vertex and a blue vertex. This means that the CCG is
also bipartite. Hence, we establish the desired property of the CCG-based ILP
encoding for the MWVC problem on any given bipartite graph.

5 Conclusions and Future Work

In this paper, we introduced the CCG-based ILP encoding of the WCSP. We
compared it to the direct ILP encoding adapted from the probabilistic reasoning
community. Theoretically, we showed that the CCG-based ILP encoding has
several advantages over the direct ILP encoding with respect to the number of
variables per constraint and the number of constraints. Empirically, we showed
that the CCG-based algorithm significantly outperforms the direct algorithm
with respect to the running time on benchmark instances. Finally, we showed
that MWVC problem instances on bipartite graphs, whose corresponding ILPs
have only integer vertices in the feasible regions of their LP relaxations, preserve
this property in their CCG-based ILP encodings as well.

It is future research to prove properties of the CCG-based ILP encoding for
ILPs with TUM constraint matrices, to use our techniques to make ILP-based
approaches competitive with other approaches for solving the WCSP, and to
extend our results to the WCSP with variables of domain sizes larger than 2.
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