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Executive Summary

e Constraint Composite Graphs (CCGs) are "lifted” representations of
Weighted Constraint Satisfaction Problems (Weighted CSPs, WCSPs).

e The Integer Linear Programming (ILP) encoding based on the CCG of a
WCSP allows one to find an optimal solution of the WCSP faster than the
ILP encoding directly based on the WCSP itself.
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@ The Weighted Constraint Satisfaction Problem (WCSP)



Weighted Constraint Satisfaction Problem (WCSP): Motivation

Many real-world problems can be solved using the WCSP:

RNA motif localization (Zytnicki et al. 2008)

e Communication through noisy channels using Error Correcting Codes in
Information Theory (Yedidia et al. 2003)

Medical and mechanical diagnostics (Milho et al. 2000; Muscettola et al.
1998)

e Energy minimization in Computer Vision (Kolmogorov 2005)
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Weighted Constraint Satisfaction Problem (WCSP)

e N variables X = {X1, X5,..., Xy}

e Each variable X; has a discrete-valued domain D(X;).

e M weighted constraints C = {C;, G, ..., C}.

e Each constraint C; specifies the weight for each assignment a of values to a
subset S(C;) of the variables (denoted by Ec,(a|S(C))).

e Find an optimal assignment a of values to these variables so as to minimize
the total weight: SV Ec.(a|S(G)).

e A Boolean WCSP is a WCSP in which the domain size of every variable is 2.

e Known to be NP-hard.
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Boolean WCSP Example

X X X

1 2 3
ol 07 o| 03 o 01
1] 0.2 1| o8 1| 10
XZ X3 X3
XN 0 1 XN\ 0 1 XN 0 1
ol 05| 06 o| 06| 13 o] 0.a | 09
1] 07 | 03 1] 1.0 | 12 1| 07 | 08

E(X1, X2, X3) = E1(X1) + Ex(X2) + E3(X3)+
E1a( X1, Xo) 4+ E13( X1, X3) + Exs( X2, X3) 5/23



WCSP Example: Evaluate the Assignment X; =0, X, =0,X3 =1

XZ X3 X3

XN 0 1 XN\ 0 1 XN 0 1
o| 05| 06 o| 06| 13 o| 0.4 | 09
1] 07 | 03 1] 1.0 | 12 1| 07 | 08

(This is not an optimal solution.) 6/23



WCSP Example: Evaluate the Assignment X; =1, X, =0, X3 =0

XZ

XN 0 1
0] 0.5 | 0.6
1| 0.7 0.3

E(X,=1,X%=0,Xs=0)=02+03+01+07+06+07=26

This is an optimal solution. Using brute force, it requires exponential time to find.

0 1
0.6 | 1.3
10 | 11

1

0 1
0.4 | 0.9
0.7 |1 0.8
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Two Forms of Structure in a WCSP

X ——
XN 0 1 <r‘§raphical StruCth97> e Graphical: Which variables
o| 05| 0.6 e are in which constraints?

1] 07| 03 e Numerical: How does each
constraint relate the

variables in it?

How can we exploit both forms

of structure computationally?

( Numerical Structure >
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Minimum Weighted Vertex Cover (MWVC)

(a) ¥
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Each vertex is associated with a non-negative weight. In a minimum weighted vertex
cover (MWVC), the sum of the weights on the vertices in the VC is minimized. 9/23
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Projection of a Minimum Weighted Vertex Cover (MWVC)

onto an Independent Set

1 1
) (%) o~ |
v 1 0 1 1 =necessarily present
1 e ) ol a [ 7 | inthe vertex cover
A 1| 5 | & | 0=necessarily absent
@ e from the vertex cover
1 1

(Kumar 2008, Fig. 2) 10/23



Projection of an MWVC onto an Independent Set

Assuming Boolean variables in WCSPs
e Observation: The projection of MWVC onto an independent set looks

similar to a weighted constraint.

e Question 1: Can we build the lifted graphical representation for any given
WCSP? This has been answered by (Kumar 2008).

e Question 2: What is the benefit of doing so?
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Lifted Representations: Example

X X X

1 2 3
ol 07 o| 03 o 01
1] 0.2 1| o8 1| 10
XZ X3 X3
XN 0 1 XN\ 0 1 XN 0 1
ol 05| 06 o| 06| 13 o] 0.a | 09
1] 07 | 03 1] 1.0 | 12 1| 07 | 08

E()(]_7 Xz, X3) = E]_(X]_) + E2(X2) + E3(X3)+
E1o(X1, X2) + E13(X1, X3) + Ex3( Xz, X3) 12/23



Lifted Representations: Example

11 0.7 | 0.8

0.1 13/23




Constraint Composite Graph (CCG)
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MWVC on the Constraint Composite Graph (CCG)

A@®os A@os A@04s A@07 A @03 A @o01
Vv~ v Vv Vv
An MWVC of the CCG encodes an optimal solution of the original
WCSP (Kumar 2008)!
Xi e MWVC = X;=1; X;  MWVC — X; =0. 15/23
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Direct ILP Encoding

Consider the WCSP (X, D,C).

nnnlnuze E E M/

qa qa €q

CeC acA(S
st. g5 € {0,1} Vq; €q
> o = 1 vCecC
acA(5(C))
> q¢ = 3 g5 VC,C' e and
acA(5(C)):a|S(C)NS(C)=s 2 €A(S(C")):a'|S(C)NS(C")=s

s € A(S(C) N S(C)),

where g€ = 1 iff the assignment a to the variables in C is part of the

to-be-determined optimal solution (Koller et al. 2009, Section 13.5). e



CCG-Based ILP Encoding

Denoting its CCG by G = (V, E, w).

VI
minimize ) wix
i=1
st X €{0,1} VvieV
Xi + X >1 V (vi,v;) € E,

where x; represents the presence of v; in the MWVC.
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Comparison

Encoding ‘ Direct ‘ CCG-Based

Number of ILP Variables (ycyzé) o (|c|2¢¢

Number of ILP Constraints (|C|2 é) \C[2€CA'
Number of ILP Variables per ILP Constraint ( ) <2

e |C|: Number of WCSP constraints
e C: Maximum number of WCSP variables in a WCSP constraint

The CCG-based ILP encoding is more advantageous if C is bounded!
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Experimental Evaluation: Instances and Setup

e The UAI 2014 Inference Competition: PR and MMAP benchmark instances
(with ten thousands variables and constraints in some cases)
e Converted to WCSP instances by taking negative logarithms and

normalizing.
e Only instances in which variables have only binary domains are used.
e Experiments were performed on a GNU/Linux workstation with an Intel
Xeon processor E3-1240 v3 (8MB Cache, 3.4GHz) and 16GB RAM.
e Each benchmark instance is encoded into ILPs using both encoding methods.
e Each benchmark instance has a running time limit of 2 minutes.
e All ILPs were solved using the Gurobi Optimizer (Gurobi Optimization, Inc.
2017).
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Experimental Evaluation: Running Time Comparison

Termination Status H Total ‘ CCG-Based Only ‘ Direct Only ‘ Neither ‘ Both

Number of Benchmark Instances H 160 ‘ 23 ‘ 5 ‘ 14 ‘ 118

The number of benchmark instances on which the direct and CCG-based algorithms
terminated within a running time limit of 120 seconds.
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Experimental Evaluation: Running Time Comparison
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Running Time of the CCG-Based Algorithm
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Projection of an MWVC onto an Independent Set

Assuming Boolean variables in WCSPs

e Observation: The projection of MWVC onto an independent set looks
similar to a weighted constraint.

e Question 1: Can we build the lifted graphical representation for any given
WCSP? This has been answered by (Kumar 2008).

e Question 2: What is the benefit of doing so? A more efficient ILP encoding

22/23



@ Conclusion



Conclusion

e We developed a new ILP encoding of (Boolean) WCSPs based on the CCG.

e On Boolean WCSPs,
e In theory, the CCG-based ILP encoding scales better in the numbers of ILP
variables and constraints than the direct ILP encoding.
e In practice, the time to solve the ILPs produced by the CCG-based ILP
encoding is in general much shorter than those produced by the direct ILP

encoding.
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