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Abstract. In this paper, we uncover some relationships between local
consistency in constraint networks and message passing akin to belief
propagation in probabilistic reasoning. We develop a new message pass-
ing algorithm, called the min-max message passing (MMMP) algorithm,
for unifying the different notions of local consistency in constraint net-
works. In particular, we study its connection to arc consistency (AC) and
path consistency. We show that AC-3 can be expressed more intuitively
in the framework of message passing. We also show that the MMMP
algorithm can be modified to enforce path consistency.
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1 Introduction

A constraint network (CN)—i.e., a constraint satisfaction problem instance—
can be defined by a tuple 〈X ,D, C〉, where X = {X1, X2, . . . , XN} is the set of
variables; D, the domain of the CN, is a function that maps a variable to its
discrete domain D(Xi); and C = {C1, C2, . . . , CM} is the set of constraints. Each
Ci consists of a subset S(Ci) of X and a list of allowed assignments of values to
these variables chosen from their domains. The task is to solve the CN, i.e., find
an assignment of values to all variables in X such that all constraints are satisfied.
A constraint is satisfied iff it allows the assignment. CNs have been used to solve
real-world combinatorial problems, such as map coloring and scheduling [7].

Local consistency of CNs is a class of properties over subsets of variables.
A CN is said to be K-consistent iff, for any subset of (K − 1) variables, any
consistent assignment of values to them (i.e., no constraints between them are
violated) can be extended to any other variable, i.e., there exists an assignment
of a value to this variable that is consistent with the (K − 1) variables. Local
consistency is enforced by procedures that make implicit constraints explicit in a
CN. Node consistency—i.e., 1-consistency—is the property that each value in the
domain of a variable satisfies the unary constraint on it. Arc consistency (AC)—
i.e., 2-consistency—is the property that each value in the domain of a variable
has a consistent extension to any other variable. Path consistency (PC)—i.e.,
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3-consistency—is the property that each consistent assignment of values to any
2 variables has a consistent extension to any other variable. A CN is said to be
strongly K-consistent iff it is k-consistent for all k ≤ K.

The procedures that enforce local consistency have practical as well as theo-
retical significance. On the practical side, enforcing local consistency prunes the
search space. On the theoretical side, enforcing strong K-consistency solves a
CN if K is greater than or equal to the treewidth of the CN [2]. If the constraint
graph of a CN with only binary constraints is a tree, then AC ensures backtrack-
free search in linear time [2]. Enforcing AC is also known to solve CNs with only
max-closed constraints [3]. Similarly, PC is known to ensure global consistency
for CNs with only connected row convex constraints [1].

Message passing is a well-known technique for solving many combinatorial
problems across a wide range of fields, such as probabilistic reasoning, artificial
intelligence, statistical physics, and information theory [5, 10]. It is based on
local information processing and communication, and avoids an exponential time
complexity with respect to the number of variables and constraints. Although
a complete theoretical analysis of its convergence and correctness is elusive, it
works well in practice on many combinatorial problems such as those that arise
in statistical physics, computer vision, error-correcting coding theory, or, more
generally, on graphical models such as Bayesian networks and Markov random
fields [10]. It has also been used to study problems such as K-satisfiability [6]
and weighted constraint satisfaction [8].

Despite the significance of local consistency in constraint processing and mes-
sage passing in probabilistic reasoning, the connection between them remains
understudied. In this paper, we report on the close relationship between them.
In light of this connection, we develop a new message passing algorithm, called
the min-max message passing (MMMP) algorithm, for solving CNs. We then
show how the MMMP algorithm relates to AC and how the AC-3 algorithm can
be expressed more intuitively in the framework of message passing. We also show
that it can be modified to enforce PC. In general, we show that the framework
of message passing unifies the different concepts of local consistency.

2 Applying Message Passing to CNs

In this section, we develop a new message passing algorithm that is analogous
to the standard min-sum and max-product message passing algorithms [5]. For
simplicity of exposition, we assume that CNs are node-consistent. A CN can then
be solved by message passing as follows. Given a CN 〈X ,D, C〉, we reformulate
it as computing

a
∗
= argmin

a∈A(X)

[
E(a) ≡ max

Cj∈C
ECj

(a|S(Cj))

]
. (1)

Here, A(X ) ≡ D(X1)×D(X2)×· · ·×D(XN ) is the set of all assignments of values
to all variables in X . (For notational convenience, we also define A(∅) = {∅}.)
a|S(Cj) is the projection of assignment a onto the set of variables S(Cj). For α,
an assignment of values to variables in S(Cj), ECj

(α) is equal to 0 if is allowed by
Cj ; otherwise it is equal to 1. Therefore, the CN is solvable if mina∈A(X )E(a) =



X1 C12

X2 C23

X3 C13

νX1→C12−−−−−→
←−−−−−
ν̂C12→X1

Fig. 1. Illustrates the factor graph of a CN with 3 variables {X1, X2, X3} and 3 con-
straints {C12, C23, C13}. Here, X1, X2 ∈ S(C12), X2, X3 ∈ S(C23), and X1, X3 ∈
S(C13). The circles represent variable vertices, and the squares represent constraint
vertices. νX1→C12 and ν̂C12→X1 are the messages from X1 to C12 and from C12 to X1,
respectively. Such a pair of messages annotates each edge (even though not all of them
are shown).

0, and its solution is any assignment a such that E(a) = 0; otherwise, it is not
solvable. We compute a∗ in Equation (1) using message passing as follows:

1. Construct an undirected bipartite graph Gf (factor graph), where each vari-
able is represented by a vertex (variable vertex) in the first partition and
each constraint is represented by a vertex (constraint vertex) in the sec-
ond partition. (For convenience of exposition, we use “variable vertices” and
“constraint vertices” interchangeably with “variables” and “constraints”, re-
spectively.) Connect Xi and Cj with an edge XiCj iff Xi ∈ S(Cj). Figure 1
illustrates a factor graph.

2. Send messages in both directions along each edge. Messages νXi→Cj and

ν̂Cj→Xi
are sent along edge XiCj from Xi to Cj and from Cj to Xi, respec-

tively. Both messages are vectors of 0/1 values and of size |D(Xi)|. Formally,

νXi→Cj
= 〈νXi→Cj

(Xi = x) | x ∈ D(Xi)〉 (2)

ν̂Cj→Xi
= 〈ν̂Cj→Xi

(Xi = x) | x ∈ D(Xi)〉. (3)

νXi→Cj (Xi = x) and ν̂Cj→Xi(Xi = x) are called “components Xi = x” of
νXi→Cj

and ν̂Cj→Xi
, respectively. Figure 1 illustrates the messages.

3. Initialize all messages to 0 and then perform update operations on them (i.e.,
update messages) iteratively according to

ν̂
(t)
Cj→Xi

(Xi = x) = min
a∈A(∂Cj\{Xi})

[
max

[
ECj

(a ∪ {Xi = x}),

max
Xk∈∂Cj\{Xi}

ν
(t−1)
Xk→Cj

(a|{Xk})
]] (4)

ν
(t)
Xi→Cj

(Xi = x) = max
Ck∈∂Xi\{Cj}

ν̂
(t)
Ck→Xi

(Xi = x) (5)

for a chosen Xi ∈ X and Cj ∈ C, and for all x ∈ D(Xi), where ∂Xi and
∂Cj are the sets of adjacent vertices of Xi and Cj in Gf , respectively; the
superscript (t) indicates the update operation number; and the max opera-
tors yield 0 if they are applied on empty sets. Different from the min-sum



message passing algorithm, all summations are replaced by maximizations
and no normalization constants are needed since we only care about whether
the values of the variables are equal to 0. Repeat this step until convergence,
i.e., Equations (4) and (5) hold for all Xi ∈ X , Cj ∈ C, and x ∈ D(Xi).

4. A set of values of all messages is called a fixed point iff it satisfies Equa-
tions (4) and (5) for all Xi ∈ X , Cj ∈ C, and xi ∈ D(Xi). Convergence
in Step 3 always leads to a fixed point, and all messages at such a fixed
point are denoted by the superscript (∞). For each variable Xi ∈ X , a final
assignment of value xi ∈ D(Xi), if it exists, is given such that

max
Cj∈∂Xi

ν̂
(∞)
Cj→Xi

(Xi = xi) = 0. (6)

The set DFm(Xi) of values xi that satisfy Equation (6) for Xi is called the
message passing domain of Xi at the fixed point F .

Since the message update rules of Equations (4) and (5) involve only opera-
tions of minimization and maximization, we name this message passing algorithm
the min-max message passing (MMMP) algorithm. The MMMP algorithm works
analogously to other standard message passing algorithms, such as the min-sum
and max-product message passing algorithms [5]. Similar to them, the MMMP
algorithm neither specifies the order of the message updates in Step 3, nor pro-
vides any guarantee for the correctness of the final assignment.

We now prove that the MMMP algorithm always converges in finite time,
even though convergence is not guaranteed for other message passing algorithms,
such as the min-sum and max-product message passing algorithms.

Lemma 1. No component of any message that is equal to 1 is changed to 0 by
the MMMP algorithm in any update operation.

Proof (by induction). This lemma holds trivially for the first update operation,
since all components of all messages equal 0 before it.

Assume that the lemma holds for the first t update operations. Consider
the (t+ 1)

th
update operation and a component of a message from a constraint

vertex to a variable vertex such that ν̂
(t)
Cj→Xi

(Xi = x) = 1 and ν̂
(t+1)
Cj→Xi

(Xi =

x) = 0. From Equation (4), ECj
(a∪{Xi = x}) does not change. Therefore, there

must exist an Xk ∈ ∂Cj \ {Xi} and an x′ ∈ D(Xk) such that νXk→Cj
(Xk = x′)

changed from 1 to 0 during the first t update operations, which contradicts the
induction assumption. A similar contradiction occurs for messages from variable
vertices to constraint vertices from Equation (5). The lemma continues to hold
for the first (t+ 1) update operations. ut

Theorem 1. There exists an order of message update operations such that the
running time of the MMMP algorithm is bounded.

Proof. Let the MMMP algorithm update messages in a sweeping order, i.e., mes-
sages are updated in rounds and in each round all messages are updated once.
From Lemma 1, the MMMP algorithm terminates after O(d ·maxCj∈C |S(Cj)| ·
|C|) rounds, where d = maxXi∈X |D(Xi)|. This upper bound measures the num-
ber of components of all messages. ut



X1

C12

X2

C23

X3

ν (0)
X1→C12 = 〈0, 0〉−−−−−−−−−−−−→

ν̂
(1)

C12
→X2

= 〈1, 0〉

←−−−−−−
−−−−−−

ν (1)
X2→C23 = 〈1, 0〉−−−−−−−−−−−−→

ν̂
(2)

C23
→X3

= 〈0, 1〉

←−−−−−−
−−−−−−

Fig. 2. Illustrates the relationship between AC and the MMMP algorithm. Here, the
CN consists of 3 variables {X1, X2, X3} and 2 constraints {C12, C23}. Each variable
has a domain of {0, 1}. C12 only allows {X1 = 0, X2 = 1} and {X1 = 1, X2 = 1}; C23

only allows {X2 = 0, X3 = 1} and {X2 = 1, X3 = 0}. The circles represent variable
vertices, and the squares represent constraint vertices. The values of some messages
are shown in the figure—the two numbers inside angle brackets are the values of the
components 0 and 1, respectively. Both components of the message ν

(0)
X1→C12

are equal

to 0. Hence the message components ν̂
(1)
C12→X2

(X2 = 0) = 1 and ν̂
(1)
C12→X2

(X2 = 1) = 0
indicate the reduced domain {1} that makes X2 arc-consistent with respect to C12.

ν
(1)
X2→C23

(X2 = 0) = 1 and ν
(1)
X2→C23

(X2 = 1) = 0 indicate that X2 should only take

the value 1 while enforcing the AC of X3 with respect to C23. ν̂
(2)
C23→X3

(X3 = 0) = 0

and ν̂
(2)
C23→X3

(X3 = 1) = 1 indicate that under such restrictions of X2, X3 can only
take the value 0 to be arc-consistent with respect to C23.

3 Arc Consistency and the MMMP Algorithm

In this section, we study the relationship between AC and the MMMP algorithm.
Consider a binary CN P = 〈X ,D, C〉, i.e., a CN with only binary constraints.
Without loss of generality, we assume that no two constraints share the same
set of variables. Let Cij denote the binary constraint that involves variables Xi

and Xj . The factor graph representation of P therefore has two variable vertices
Xi and Xj connected to each constraint vertex Cij . Xi is arc-consistent with
respect to Xj (and Cij) iff for each xi ∈ D(Xi), there exists an xj ∈ D(Xj) such
that the assignment {Xi = xi, Xj = xj} is allowed in Cij . P is arc-consistent
iff all variables are arc-consistent with respect to each other [7]. A domain D′
such that D′(X) ⊆ D(X) for all X ∈ X is called an AC domain of P iff the CN
〈X ,D′, C〉 is arc-consistent and retains all solutions of P .

Intuitively, a message from a constraint vertex Cij to a variable vertex Xi

encodes the AC of Xi with respect to Cij , and the outgoing messages from Xi

encode the prevailing values in its domain. Figure 2 illustrates this intuition.
We now formally prove a relationship between AC and the MMMP algorithm.

Theorem 2. Under the MMMP algorithm, the CN P ′ = 〈X ,DFm, C〉 is arc-
consistent for any fixed point F of any binary CN 〈X ,D, C〉.

Proof (by contradiction). Assume that there exists a fixed point F ′ such that P ′

is not arc-consistent, i.e., there exists a constraint Cij such that

∃xi ∈ DF ′
m (Xi) : ∀xj ∈ DF ′

m (Xj) : {Xi = xi, Xj = xj} 6∈ Cij . (7)



Now consider such an xi.

– By the definition of ECij
, from Equation (7), we have

∀xj ∈ DF ′
m (Xj) : ECij

({Xi = xi, Xj = xj}) = 1. (8)

– By the definition of DF ′m (Xj), we have

∀xj ∈ D(Xj) \ DF ′
m (Xj) : max

Cjk∈∂Xj
ν̂
(∞)
Cjk→Xj

(Xj = xj) = 1. (9)

Here we consider two cases for all xj ∈ D(Xj) \ DF
′

m (Xj).
• xj satisfies ∃Cjk ∈ ∂Xj \ {Cij} : ν̂

(∞)
Cjk→Xj

(Xj = xj) = 1. From Equa-

tion (5), we have
ν
(∞)
Xj→Cij

(Xj = xj) = 1. (10)

• xj satisfies ∀Cjk ∈ ∂Xj \ {Cij} : ν̂
(∞)
Cjk→Xj

(Xj = xj) = 0. From Equa-

tion (9), this implies ν̂
(∞)
Cij→Xj

(Xj = xj) = 1. By applying Equation (4)

to ν̂
(∞)
Cij→Xj

(Xj = xj), we have

ECij
({Xi = xi, Xj = xj}) = 1 ∨ ν(∞)

Xi→Cij
(Xi = xi) = 1. (11)

By applying Equation (5) on ν
(∞)
Xi→Cij

(Xi = xi), we have ν
(∞)
Xi→Cij

(Xi =
xi) = 0 for the following reasons: (a) if ∂Xi = {Cij}, then the max

operator is applied on an empty set and thus ν
(∞)
Xi→Cij

(Xi = xi) = 0;

or (b) otherwise, ν
(∞)
Xi→Cij

(Xi = xi) = 1 implies xi 6∈ DF ′

m (Xi), which

contradicts the assumption. Therefore, in this case, we have

ECij
({Xi = xi, Xj = xj}) = 1. (12)

By applying Equation (4) to ν̂
(∞)
Cij→Xi

(Xi = xi) and plugging in Equations (8),

(10) and (12), we have
ν̂
(∞)
Cij→Xi

(Xi = xi) = 1, (13)

which violates Equation (6) for Xi = xi and contradicts xi ∈ DF ′

m (Xi). ut

Theorem 3. Whenever the MMMP algorithm converges to a fixed point F on
a CN P , DFm preserves all solutions of P , i.e., for any solution a, we have
∀(Xi = xi) ∈ a : xi ∈ DFm(Xi).

Proof (by induction). From Lemma 1, for a variable vertex Xi, if there exists
a component of a message ν̂Cij→Xi

(Xi = xi) that changes from 0 to 1 in some
update operation, we know that DFm(Xi) does not include xi; otherwise, DFm(Xi)
includes xi since all messages are initialized to 0. Therefore, we only need to prove
that, whenever such a change occurs in the MMMP algorithm, the exclusion of xi
from DFm(Xi) preserves all solutions. We define the message passing domain of Xi

after the tth update operation, denoted by D(t)
m (Xi), as the set of values xi such

that maxCij∈∂Xi
ν̂
(t)
Cij→Xi

(Xi = xi) = 0. Upon convergence, D(t)
m (Xi) = DFm(Xi).



D(0)
m preserves all solutions since all messages are initialized to 0. Assume

that D(t)
m preserves all solutions. Consider the (t+ 1)

th
update operation. We

only consider the case where ∃Xi ∈ X : D(t)
m (Xi) 6= D(t+1)

m (Xi); otherwise, there
is no solution excluded in this update operation. In this case, there exists a
component of a message ν̂Cij→Xi

(Xi = xi) that changes from 0 to 1 in this
update operation and thus xi 6∈ DFm(Xi).

If ∀xj ∈ D(Xj) : ν
(t)
Xj→Cij

(Xj = xj) = 0, then Xi = xi cannot be in any

solution, since by applying Equation (4) to ν̂
(t+1)
Cij→Xi

(Xi = xi) (which equals 1),

we have ∀xj ∈ D(Xj) : ECij
({Xi = xi, Xj = xj}) = 1. Therefore, ∃xj ∈ D(Xj) :

ν
(t)
Xj→Cij

(Xj = xj) = 1.

If ∃xj ∈ D(t)
m (Xj) : ν

(t)
Xj→Cij

(Xj = xj) = 1, from Equation (5), we have

∂Xj \ {Cij} 6= ∅ and maxCjk∈∂Xj\{Cij} ν̂
(t)
Cjk→Xj

(Xj = xj) = 1, and thus by

definition xj 6∈ D(t)
m (Xj), which contradicts the assumption. As a result, we have

∀xj ∈ D(t)
m (Xj) : ν

(t)
Xj→Cij

(Xj = xj) = 0. (14)

By applying Equation (4) to ν̂
(t+1)
Cij→Xi

(Xi = xi), which equals 1, we have

∀xj ∈ D(t)
m (Xj) : max[ECij

({Xi = xi, Xj = xj}), ν(t)
Xj→Cij

(Xj = xj)] = 1. (15)

By plugging Equation (14) into the equation above, we have ∀xj ∈ D(t)
m (Xj) :

ECij ({Xi = xi, Xj = xj}) = 1. Since D(t)
m preserves all solutions, Xi = xi cannot

be in any solution of P . ut

AC can be enforced on a given CN P by AC algorithms that reduce the
domains of variables without losing solutions. Arc Consistency Algorithm #3
(AC-3) is one such algorithm [4]. The graphical representation G of a CN P has
vertices that represent variables and undirected edges that connect two variables
iff there is a constraint involving them. AC-3 works as follows:

1. Convert G into a directed graph by replacing all edges with two arcs (directed
edges) in opposite directions.

2. Insert all arcs into a queue Q.
3. Remove an arc (Xi, Xj) fromQ. Ensure thatXi is arc-consistent with respect

to Xj by reducing D(Xi), if necessary. If D(Xi) is reduced, insert all arcs
incoming to Xi other than (Xj , Xi) into Q. Repeat this step until Q is empty.

AC-3 can be reinterpreted as an MMMP algorithm as follows.

1. Construct the factor graph for CN P .
2. Insert all messages from constraint vertices to variable vertices into a queue
Q.

3. Remove a message ν̂Cij→Xi from Q. Update it and all messages from Xi

to constraint vertices other than Cij according to Equations (4) and (5),
respectively. If νXi→Cik

changes, insert all messages from Cik to variables
other than Xi into Q. Repeat this step until Q is empty. Figure 3 illustrates
one such step.



X1 C12

X2 C23

X3 C13

X4 C24

Fig. 3. Illustrates one iteration of Step 3 of MMMP-AC-3. Here, the circles represent
variable vertices, and the squares represent constraint vertices. Each arrow represents a
message. In this iteration, the message ν̂C23→X2 (red) is removed from Q and updated
according to Equation (4). νX2→C12 and νX2→C24 (blue) are updated afterward accord-
ing to Equation (5). Assuming that both messages change, the messages ν̂C12→X1 and
ν̂C24→X4 (orange) are inserted into Q. Following the sequence of red, blue, and orange
arrows, this iteration intuitively looks like paths expanded from C23.

4. Reduce the domain of each variable Xi to its message passing domain.

We call this algorithm MMMP-AC-3. Clearly, it is an MMMP algorithm
with a particular order of message update operations. Intuitively, the update of
a message from a constraint vertex Cij to a variable vertex Xi indicates those
domain values ofXi that must be excluded to maintain the AC ofXi with respect
to Xj . The update of a message from a variable vertex Xi to a constraint vertex
Cij indicates the reduced domain of Xi for the constraint Cij .

Theorem 4. MMMP-AC-3 terminates in bounded time.

Proof. In Step 3, each message from a constraint vertex Cij to a variable vertex
Xi can be inserted into Q for at most d times, since νXj→Cij

has at most d
components and thus (from Lemma 1) can change at most d times. Therefore
MMMP-AC-3 has a bounded running time. ut

Lemma 2. When MMMP-AC-3 terminates, the set of values of all messages is
a fixed point.

Proof. We first prove that no message from a variable vertex to a constraint
vertex changes if it is updated after MMMP-AC-3 terminates. This holds since
Equation (5) holds initially and, in Step 3, each message νXi→Cij

is updated
immediately after any of the messages from constraint vertices toXi are updated.

We now prove by contradiction that no message from a constraint vertex to a
variable vertex changes if it is updated after MMMP-AC-3 terminates. Assume
that there exists a message ν̂Cij→Xi

that changes if it is updated. Hence, at least
one of the messages from variable vertices other than Xi to Cij must have been
updated after ν̂Cij→Xi

was last updated. Therefore, ν̂Cij→Xi
is in queue Q, which

is a contradiction since MMMP-AC-3 would not have terminated then. ut

Theorem 5. MMMP-AC-3 is correct, i.e., it results in an AC domain of P .



Proof. The theorem immediately follows from Theorems 2 to 4 and Lemma 2.
ut

4 Strong Path Consistency and Message Passing

In this section, we study the relationship between strong path consistency and
message passing. Consider a binary CN P = 〈X ,D, C〉. Once again, we use Cij to
denote the binary constraint that involves variables Xi and Xj . Xi and Xj are
path-consistent with respect to Xk iff, for all values xi ∈ D(Xi) and xj ∈ D(Xj)
such that Cij allows {Xi = xi, Xj = xj}, there exists a value xk ∈ D(Xk)
such that Cik allows the assignment {Xi = xi, Xk = xk} and Cjk allows the
assignment {Xj = xj , Xk = xk}. A binary CN is path-consistent iff every two of
its variables are path-consistent with respect to any third variable [7]. A binary
CN is strongly path-consistent iff it is both arc-consistent and path-consistent.

Generalized message passing allows more than one intersection variable be-
tween adjacent vertices. It stems from the Kikuchi approximation of free energy
in statistical mechanics [9]. The MMMP algorithm can be modified to a general-
ized message passing algorithm to enforce strong path consistency (strong PC).
We first unify Equations (4) and (5) in the MMMP algorithm to

µ
(t)
Ui→Uj

(S(Ui, Uj) = uij) = min
a∈A(S(Ui)\S(Uj))

[
max

[
EUi

(a ∪ {S(Ui, Uj) = uij}),

max
Uk∈∂Ui\{Uj}

µ
(t−1)
Uk→Ui

(a ∪ {S(Ui, Uj) = uij}|S(Uk, Ui))
]]
,

(16)

where Ui stands for a vertex in the factor graph; µUi→Uj
is the message sent

from Ui to Uj ; S(Ui) stands for the scope of Ui, which is defined as

S(Ui) =

{
{Xi} if Ui is a variable vertex Xi,

S(Ci) if Ui is a constraint vertex Ci;
(17)

S(Ui, Uj) stands for S(Ui)∩ S(Uj); S(Ui) = a stands for assigning the variables
in S(Ui) to a; and EUi

is the potential of Ui, which is defined as

EUi
(S(Ui) = a) =

{
0 if Ui is a variable vertex Xi,

ECi
(S(Ci) = a) if Ui is a constraint vertex Ci.

(18)

Under this unification, we can enforce strong PC by modifying the MMMP
algorithm as follows. After creating the factor graph Gf , we add additional
vertices (triplet vertices) with zero potentials that represent all possible combi-
nations of 3 distinct variables, as shown in Figure 4. A triplet vertex is connected
to a constraint vertex Ci iff it includes both variables in S(Ci). In Step 3 of the
MMMP algorithm, we replace Equations (4) and (5) by Equation (16). In Step
4 of the MMMP algorithm, we replace Equation (6) by the generalized equation

max
Uj∈∂Ui

µ
(∞)
Uj→Ui

(S(Ui) = ui|S(Ui, Uj)) = 0. (19)

Similar to the MMMP algorithm, we call a set of values of all messages a fixed
point iff it satisfies Equation (16) for all Ui in the modified factor graph. The
set DFm(Ui) of values of ui that satisfy Equation (19) for each vertex Ui is called
the message passing domain of Ui at the fixed point F . The message passing
domains of Ui ∈ X and Ui ∈ C are the assignments of values to each variable
and each pair of variables, respectively, that enforce strong PC.



X1 C12

X2 C23

X3 C13

X4 C24

U123

U234

U124

U134

µC12→U123−−−−−−−→
←−−−−−−−µU123→C12

Fig. 4. Illustrates the modified factor graph for the modified MMMP algorithm.
The CN consists of 4 Boolean variables {X1, X2, X3, X4} and 4 constraints
{C12, C23, C13, C24}. Here, S(C12) = {X1, X2}, S(C23) = {X2, X3}, S(C13) =
{X1, X3}, and S(C24) = {X2, X4}. Uijk is the triplet that represents Xi, Xj , and
Xk. The circles, squares, and octagons represent variable vertices, constraint vertices,
and triplet vertices, respectively. µU123→C12 and µC12→U123 are the messages from U123

to C12 and from C12 to U123, respectively. Each of them is a vector of 0/1 values and of
size 2× 2 = 4. Such a pair of messages (additional to the messages shown in Figure 1)
annotates each edge that is incident on a triplet vertex (even though not all are shown).

Lemma 3. No component of any message that is equal to 1 is changed to 0 by
the modified MMMP algorithm in any update operation.

Proof. The proof is similar to that of Lemma 1. ut

Theorem 6. There exists an order of message update operations such that the
running time of the modified MMMP algorithm is bounded.

Proof. The proof is similar to that of Theorem 1. ut

Theorem 7. Under the modified MMMP algorithm, the CN P ′ = 〈X ,DFm, C〉 is
strongly path-consistent for any fixed point F of any binary CN 〈X ,D, C〉.

Proof. The proof of AC is similar to that of Theorem 2.
We now prove PC by contradiction. Let the consistent assignment of values

to 2 variables {Xi = xi, Xj = xj} in DFm(Cij) violate PC with respect to Xk

(but not violate AC) in DFm.

– From the PC violation assumption of {Xi = xi, Xj = xj}, we have

∀xk ∈ DF
m(Xk) : ECik

({Xi = xi, Xk = xk}) = 1 ∨ ECjk
({Xj = xj , Xk = xk}) = 1. (20)

We use Uijk to denote the triplet vertex that represents Xi, Xj , and Xk.
Therefore, for such xk’s, by applying Equation (16) to µ

(∞)
Cik→Uijk

({Xi =

xi, Xk = xk}) and µ
(∞)
Cjk→Uijk

({Xj = xj , Xk = xk}), we have

∀xk ∈ DF
m(Xk) :

max
[
µ
(∞)
Cik→Uijk

({Xi = xi, Xk = xk}), µ(∞)
Cjk→Uijk

({Xj = xj , Xk = xk})
]
= 1.

(21)



– By definition of the message passing domain of Xk, we have

∀xk ∈ D(Xk) \ DF
m(Xk) : max

Cik∈∂Xk

µ
(∞)
Cik→Xk

(Xk = xk) = 1. (22)

Then, by applying Equation (16) to µ
(∞)
Xk→Cik

(Xk = xk) and µ
(∞)
Xk→Cjk

(Xk =
xk), we have

∀xk ∈ D(Xk) \ DF
m(Xk) : µ

(∞)
Xk→Cik

(Xk = xk) = 1 ∨ µ
(∞)
Xk→Cjk

(Xk = xk) = 1. (23)

Then by applying Equation (16) to µ
(∞)
Cik→Uijk

({Xi = xi, Xk = xk}) and

µ
(∞)
Cjk→Uijk

({Xj = xj , Xk = xk}), we have

∀xk ∈ D(Xk) \ DF
m(Xk) :

max
[
µ
(∞)
Cik→Uijk

({Xi = xi, Xk = xk}), µ(∞)
Cjk→Uijk

({Xj = xj , Xk = xk})
]
= 1.

(24)

Applying Equation (16) to µ
(∞)
Uijk→Cij

({Xi = xi, Xj = xj}), we have

µ
(∞)
Uijk→Cij

({Xi = xi, Xj = xj}) =

min
xk∈D(Xk)

max
[
µ
(∞)
Cik→Uijk

({Xi = xi, Xk = xk}), µ(∞)
Cjk→Uijk

({Xj = xj , Xk = xk})
]
.

(25)

From Equations (21) and (24), we have the right-hand side of Equation (25) equal
to 1. This means that µUijk→Cij

({Xi = xi, Xj = xj}) = 1, which contradicts
Equation (19) for Cij .

Therefore, the modified MMMP algorithm enforces strong PC for P . ut

Theorem 8. Whenever the modified MMMP algorithm converges to a fixed
point F on a CN P , DF

m preserves all solutions of P , i.e., for any solution
a, we have ∀(S(Ui) = ui) ∈ a : ui ∈ DFm(Ui).

Proof. The proof is similar to that of Theorem 3.

Notes on the Modified MMMP Algorithm

– The running intersection property (RIP) is generally required for message
passing algorithms. This property requires that, for any variable Xi, all ver-
tices in Gf that contain it form a unique path. Ensuring the RIP for useful
generalized message passing is usually complicated [9]. However, the modi-
fied MMMP algorithm does not require it, which is due to Lemma 3. Still,
for any variable Xi, all vertices in the modified factor graph that contain it
form a connected subgraph. We call this property the quasi RIP. Unlike the
RIP, ensuring the quasi RIP for the modified MMMP algorithm is easy.

– The modified MMMP algorithm works even if there exist ternary constraints,
in which case we simply set the potentials of the corresponding triplet ver-
tices to represent the constraints. Thus, it can also be used to implement
“generalized PC” analogous to generalized AC (GAC).



– The modified factor graph is still a bipartite graph—variable vertices and
triplet vertices are in one partition, and constraint vertices are in the other
partition. MMMP-AC-3 can be extended to enforce PC by treating triplet
vertices as variable vertices and following the same order of message update
operations1. This is equivalent to the Path Consistency Algorithm #2 (PC-
2) [4]. The framework of the MMMP algorithm thus unifies AC-3 and PC-2.

– The modified MMMP algorithm can be extended to strong K-consistency
by adding vertices that represent larger groups of variables.

5 Conclusions

We presented the MMMP algorithm for solving CNs. We established a relation-
ship between the MMMP algorithm and AC, namely that any fixed point of the
MMMP algorithm leads to an AC domain. We then showed that the AC-3 algo-
rithm can be stated as the MMMP algorithm using a particular order of message
update operations. We modified the MMMP algorithm to establish a relation-
ship with PC. We showed that the modified MMMP algorithm has benefits that
other generalized message passing algorithms do not have.
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