
LATEX TikZposter

A Linear-Time and Linear-Space Algorithm for
the Minimum Vertex Cover Problem on Giant Graphs

Hong Xu T. K. Satish Kumar Sven Koenig
hongx@usc.edu tkskwork@gmail.com skoenig@usc.edu

University of Southern California, Los Angeles, California 90089, the United States of America
The 10th International Symposium of Combinatorial Search

A Linear-Time and Linear-Space Algorithm for
the Minimum Vertex Cover Problem on Giant Graphs

Hong Xu T. K. Satish Kumar Sven Koenig
hongx@usc.edu tkskwork@gmail.com skoenig@usc.edu

University of Southern California, Los Angeles, California 90089, the United States of America
The 10th International Symposium of Combinatorial Search

I. Abstract

In this paper, we develop the message passing based linear-time and linear-space MVC algorithm
(MVC-MPL) for solving the minimum vertex cover (MVC) problem. MVC-MPL is based on heuristics
derived from a theoretical analysis of message passing algorithms in the context of belief propagation.
We show that MVC-MPL produces smaller vertex covers than other linear-time and linear-space
algorithms.

III. Warning Propagation for the MVC Problem

Proposed and analyzed by Weigt and Zhou (2006).
There is a message of either 0 or 1 along each direction of each edge. Assuming u and v are two
adjacent vertices. u sends v a message of 1 to “warn” v to indicate that u will not be selected in the
vertex cover. Otherwise, u sends v a message of 0.
• u sends a message of 0 to v iff u only receives messages of 0 from its adjacent vertices other than v.

•A vertex is in the vertex cover iff it has at least one incoming message of 1.

•Assuming independence of the probabilities of messages, a given vertex can be chosen to be in or
not in the vertex cover based on the probability of having at least one incoming message of 1.

u v
1

0

0

0

Fig. 1: u sends a message of 1 to v since all other incoming messages are 0.

u v
0

1

0

0

Fig. 2: u sends a message of 0 to v since one of its incoming messages is 1.

II. Algorithms in the Comparison

•The MVC problem: The problem to find a vertex cover of minimum cardinality
on a given undirected graph.

•MVC-2: A factor-2 approximation algorithm. It arbitrarily selects an edge and
adds both endpoint vertices into the vertex cover. It repeats this procedure
until all edges are covered.

•MVC-L: An algorithm based on the intuition that vertices with higher degrees
are more likely to be in the vertex cover.

•MVC-MPL: Our algorithm inspired by warning propagation.

IV. MVC-MPL

Algorithm 1: MVC-MPL

1 Function MVC-MPL(G = 〈V,E〉)
Input: G: The graph to find an MVC for.
Output: A VC of G.

2 Initialize V C = ∅ and IS = ∅;
3 c := average degree of vertices in G;
4 p0 := 1−W (c)/c; // Fraction of zero messages

5 while ∃v ∈ V \ (V C ∪ IS) do
6 k(v) := |{u ∈ ∂v | u 6∈ V C}|; // Number of adjacent vertices

7 Draw a random real number r uniformly at random from [0, 1];

8 if r < p
k(v)
0 then

9 Add v to IS;
10 Add all u ∈ ∂v to V C;

11 else
12 Add v to V C;

13 return V C;

V C: vertex cover IS: independent set
∂v: set of adjacent vertices of v W (·): Lambert-W function

V. Experimental Results

Input Graph Vertex Cover Size Running Time (milliseconds)

Instance |V | |E| MVC-MPL MVC-L MVC-2 MVC-MPL MVC-L MVC-2

bn-human-BNU-1-0025864-session-1-bg 696,338 143,158,340 647,568 659,013 686,776 724 925 1,101
bn-human-BNU-1-0025864-session-2-bg 692,957 133,727,517 644,157 655,414 683,248 702 882 1,016

soc-livejournal 4,033,137 27,933,063 2,148,197 2,205,385 2,591,926 893 971 731
soc-ljournal-2008 5,363,201 79,023,143 3,127,083 3,623,388 4,908,058 1,200 1,363 1,492
soc-livejournal07 5,204,176 49,174,621 2,882,334 2,913,930 3,522,680 1,390 1,610 1,194

tech-as-skitter 1,696,415 11,095,299 624,654 695,988 891,280 253 252 193
tech-ip 2,250,498 21,644,715 69,525 122,870 132,640 681 497 176

web-baidu-baike 2,141,330 17,794,839 745,685 784,284 1,063,178 527 528 300
web-hudong 1,984,484 14,869,484 713,449 743,685 1,061,712 406 390 248

web-wiki-ch-internal 1,930,275 9,359,108 323,142 351,770 418,946 336 309 130

Table 1: The “Instance” column shows the names of the input graphs; the “|V |” and “|E|” columns show the numbers of vertices and edges in the graphs, respectively. The next 6 columns show the size of the VC and running
time of each algorithm on each instance, respectively. For each instance, the size of the VC and running time are averages over 20 repeated runs. All instances are taken from the Network Repository (Rossi and Ahmed 2015)
of various categories.

•MVC-MPL won on almost all instances in terms of vertex cover sizes.

•MVC-MPL won on 3 out of 10 instances in terms of running times. For those instances on which it was slower, it still terminated fast.

VI. References

Rossi, Ryan A. and Nesreen K. Ahmed (2015). “The Network Data Repository with Interactive Graph Analytics and Visualization”. In: AAAI Conference on Artificial Intelligence, pp. 4292–4293. url: http://
networkrepository.com.

Weigt, Martin and Haijun Zhou (2006). “Message passing for vertex covers”. In: Physical Review E 74.4, p. 046110. doi: 10.1103/PhysRevE.74.046110.

Acknowledgments

The research at the University of Southern California was supported by the National Science Foundation under grant numbers 1409987 and 1319966.

