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Abstract. We study two important implications of the constraint com-
posite graph (CCG) associated with the weighted constraint satisfaction
problem (WCSP). First, we show that the Nemhauser-Trotter (NT) re-
duction popularly used for kernelization of the minimum weighted vertex
cover (MWVC) problem can also be applied to the CCG of the WCSP.
This leads to a polynomial-time preprocessing algorithm that fixes the
optimal values of a large subset of the variables in the WCSP. Second,
belief propagation (BP) is a well-known technique used for solving many
combinatorial problems in probabilistic reasoning, artificial intelligence
and information theory. The min-sum message passing (MSMP) algo-
rithm is a simple variant of BP that has also been successfully employed
in several research communities. Unfortunately, the MSMP algorithm
has met with little success on the WCSP. We revive the MSMP algo-
rithm for solving the WCSP by applying it on the CCG of a given WCSP
instance instead of its original form. We refer to this new MSMP algo-
rithm as the lifted MSMP algorithm for the WCSP. We demonstrate the
effectiveness of our algorithms through experimental evaluations.

1 Introduction

The weighted constraint satisfaction problem (WCSP) is a combinatorial opti-
mization problem. It is a generalization of the constraint satisfaction problem
(CSP) in which the constraints are no longer “hard”. Instead, each tuple in a
constraint—i.e., an assignment of values to all variables in that constraint—is as-
sociated with a non-negative weight (sometimes referred to as “cost”). The goal
is to find an assignment of values to all variables from their respective domains
such that the total weight is minimized [1].

More formally, the WCSP is defined by a triplet B = 〈X ,D, C〉, where
X = {X1, X2, . . . , XN} is a set of N variables, D = {D1, D2, . . . , DN} is a
set of N domains with discrete values, and C = {C1, C2, . . . , CM} is a set of
M weighted constraints. Each variable Xi ∈ X can be assigned a value in its
associated domain Di ∈ D. Each constraint Ci ∈ C is defined over a certain
subset of the variables Si ⊆ X , called the scope of Ci. Ci associates a non-
negative weight with each possible assignment of values to the variables in Si.
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(For notational convenience, we use Si and Ci interchangeably throughout this
paper when referring to the variables participating in a weighted constraint, e.g.,
Xk ∈ Ci ≡ Xk ∈ Si.) The goal is to find an assignment of values to all variables in
X from their respective domains that minimizes the sum of the weights specified
by each weighted constraint in C [1]. This combinatorial task can equivalently
be characterized by having to compute

arg min
a∈A(X )

∑
Ci∈C

ECi(a|Ci), (1)

where A(X ) represents the set of all |D1|×|D2|×. . .×|DN | complete assignments
to all variables in X . a|Ci represents the projection of a complete assignment a
onto the subset of variables in Ci. ECi is a function that maps each a|Ci to its
associated weight in Ci.

The Boolean WCSP is the WCSP in which each domain Di ∈ D has its
cardinality restricted to be 2. Despite this restriction, the Boolean WCSP is
representationally as powerful as the WCSP, and it is also NP-hard to solve
in general. The (Boolean) WCSP can be used to model a wide range of use-
ful combinatorial problems arising in a large number of real-world application
domains. For example, in artificial intelligence, it can be used to model user
preferences [2] and combinatorial auctions. In bioinformatics, it can be used to
locate RNA motifs [21]. In statistical physics, the energy minimization problem
on the Potts model is equivalent to that on its corresponding pairwise Markov
random field [20], which in turn can be modeled as the WCSP. In computer
vision, it can be used for image restoration and panoramic image stitching [3,8].

The constraint composite graph (CCG) is a combinatorial structure asso-
ciated with an optimization problem posed as the WCSP. The CCG provides
a unifying framework for simultaneously exploiting the graphical structure of
the variable-interactions in the WCSP as well as the numerical structure of the
weighted constraints in it. The task of solving the WCSP can be reformulated
as the task of finding a minimum weighted vertex cover (MWVC) on its associ-
ated CCG [9–11]. CCGs can be constructed in polynomial time and are always
tripartite [9–11]. A subclass of the WCSP has instances with bipartite CCGs.
This subclass is tractable since the MWVC problem can be solved in polynomial
time on bipartite graphs using a staged maxflow algorithm [4].

Despite its theoretical importance, the CCG still remains largely understud-
ied. In this paper, we study two important implications of the CCG. First, we
show that the Nemhauser-Trotter (NT) reduction popularly used for kerneliza-
tion of the MWVC problem [16] can also be applied to the CCG of the WCSP.
This leads to a polynomial-time preprocessing algorithm that fixes the optimal
values of a subset of the variables in the WCSP; and this subset is often the set
of all variables. As a consequence, many WCSP instances can be solved by the
polynomial-time NT reduction without search. Experimental evaluations of the
NT reduction on the Boolean WCSP benchmark instances show that about 1/8th

of these benchmark instances have a kernel of size 0. In other words, about 1/8th

of these benchmark instances can be solved without search, simply by using the
power of the preprocessing algorithm that encapsulates the NT reduction.



Second, belief propagation (BP) is a well-known technique used for solving
many combinatorial problems in probabilistic reasoning, artificial intelligence
and information theory. The min-sum message passing (MSMP) algorithm is a
simple variant of BP that has also been successfully employed in several research
communities. Unfortunately, the MSMP algorithm has met with little success on
the WCSP. We revive the MSMP algorithm for solving the WCSP by applying
it on the CCG of a given WCSP instance instead of its original form. We refer to
these algorithms as the lifted MSMP algorithm (since the CCG is a lifted repre-
sentation of the WCSP [9–11]) and the original MSMP algorithm, respectively.
Intuitively, the lifted MSMP algorithm outperforms the original MSMP algo-
rithm in terms of effectiveness since the CCG associated with the WCSP makes
the numerical structure of its weighted constraints explicit using a tripartite
graphical representation. We demonstrate the effectiveness of the lifted MSMP
algorithm through experimental evaluations on the Boolean WCSP benchmark
instances. We show that it outperforms the original MSMP algorithm on these
benchmark instances in terms of solution quality.

2 The Constraint Composite Graph

Given an undirected graph G = 〈V,E〉, a vertex cover of G is defined as a
set of vertices S ⊆ V such that every edge in E has at least one of its endpoint
vertices in S. A minimum vertex cover (MVC) of G is a vertex cover of minimum
cardinality. When G is vertex-weighted—i.e., each vertex vi ∈ V has a non-
negative weight wi associated with it—its MWVC is defined as a vertex cover
of minimum total weight of its vertices. The MWVC problem is to compute an
MWVC on a given vertex-weighted undirected graph.

For a given graph G, the concept of the MWVC problem can be extended
to the notion of projecting MWVCs onto a given independent set (IS) U ⊆ V .
(An IS is defined as a set of vertices in which no two of them are connected
by an edge.) The input to such a projection is the graph G as well as an IS
U = {u1, u2, . . . , uk}. The output is a table of 2k numbers. Each entry in this
table corresponds to a k-bit vector. We say that a k-bit vector t imposes the
following restrictions: (a) if the ith bit ti is 0, the vertex ui has to be excluded
from the MWVC; and (b) if the ith bit ti is 1, the vertex ui has to be included in
the MWVC. The projection of the MWVC problem onto the IS U is then defined
to be a table with entries corresponding to each of the 2k possible k-bit vectors

t(1), t(2), . . . , t(2
k). The value of the entry corresponding to t(j) is equal to the

weight of the MWVC conditioned on the restrictions imposed by t(j). Figure 1
in [11] presents a simple example to illustrate this projection in a vertex-weighted
undirected graph.

The table of numbers produced above can be viewed as a weighted constraint
over |U | Boolean variables. Conversely, given a (Boolean) weighted constraint, we
design a lifted representation for it so as to be able to view it as the projection of
MWVCs onto an IS in some intelligently constructed vertex-weighted undirected
graph [9, 10]. The benefit of constructing these representations for individual



constraints lies in the fact that the lifted representation for the entire WCSP,
called the CCG of the WCSP, can be obtained simply by “merging” them.

Figure 2 in [11] shows an example WCSP instance over 3 Boolean variables
to illustrate the construction of the CCG. Here, there are 3 unary weighted
constraints and 3 binary weighted constraints. Their lifted representations are
shown next to them. The figure also illustrates how the CCG is obtained from
the lifted representations of the weighted constraints: In the CCG, vertices that
represent the same variable are simply “merged”—along with their edges—and
every “composite” vertex is given a weight equal to the sum of the individual
weights of the merged vertices. Computing the MWVC for the CCG yields a
solution for the WCSP instance; namely, if Xi is in the MWVC, then it is
assigned the value 1 in the WCSP instance, otherwise it is assigned the value 0
in the WCSP instance. The CCG of the WCSP can be constructed in polynomial
time using the algorithms suggested in [9, 10].

3 Kernelization of the WCSP: NT Reduction on CCGs

The NT reduction is a polynomial-time kernelization procedure that reduces
the size of a given MWVC problem instance [16]. It can be potentially applied
on CCGs as well. It is based on the observation that the MWVC problem is a
half-integral problem. This means that its Integer Linear Programming (ILP)
formulation exhibits the following property. Given a graph G = 〈V,E〉, let wi be
the non-negative weight associated with vertex vi. In the ILP formulation of the
MWVC problem instance on G, a Boolean decision variable Zi is first associated
with the presence of vertex vi in the MWVC. Then, the ILP formulation is

Minimize

|V |∑
i=1

wiZi,

∀ vi ∈ V : Zi ∈ {0, 1},
∀ (vi, vj) ∈ E : Zi + Zj ≥ 1.

(2)

If we relax the integrality constraints Zi ∈ {0, 1} for all i ∈ {1, 2, . . . , |V |} and
solve the relaxed LP, the optimal solution of the LP is guaranteed to be half-
integral—i.e., ∀i ∈ {1, 2, . . . , |V |} : Zi ∈ {0, 12 , 1}. There then exists an MWVC
on G that includes vi if Zi = 1 and excludes vi if Zi = 0. Therefore, one can
kernelize the MWVC problem instance on G to an MWVC problem instance on
a subgraph of G by retaining only those vertices whose Boolean variables in the
optimal solution of the LP are 1

2 .
The half-integrality property can be further exploited to solve the LP relax-

ation of the MWVC problem with a maxflow algorithm instead of a general LP
solver [4]. We first transform G to a vertex-weighted undirected bipartite graph
Gb = 〈V L

Gb
, V R

Gb
, EGb

〉 as follows. For each vertex vi ∈ V , we create two vertices

vLi ∈ V L
Gb

and vRi ∈ V R
Gb

, both with weight wi. For each edge (vi, vj) ∈ E, we

create two edges (vLi , v
R
j ) ∈ EGb

and (vLj , v
R
i ) ∈ EGb

. The MWVC problem
can be solved in polynomial time on the bipartite graph Gb using a maxflow



algorithm [4]; and the half-integral solution of the above LP relaxation can be
retrieved as follows. If both vLi and vRi are in the MWVC of Gb, then Zi = 1
and vi can be safely included in the MWVC of G; if neither vLi nor vRi is in the
MWVC of Gb, then Zi = 0 and vi can be safely excluded from the MWVC of G;
if exactly one of vLi or vRi is in the MWVC of Gb, then Zi = 1

2 and vi is retained
in the kernel of the MWVC problem instance posed on G.

4 Min-Sum Message Passing on the WCSP and CCGs

BP is a well-known technique for solving many combinatorial problems across
a wide range of fields such as probabilistic reasoning, artificial intelligence and
information theory. It can be used to solve hard inference problems that arise
in statistical physics, computer vision, error-correcting coding theory or, more
generally, on graphical models such as Bayesian Networks and Markov random
fields [20]. BP is an efficient algorithm that is based on local message passing.
Although a complete theoretical analysis of its convergence and correctness is
elusive, it works well in practice on many important combinatorial problems.

While BP performs message passing for the objective of marginalization over
probabilities, the MSMP algorithm is a variant of BP that is used to find an
assignment of values to all variables in X that minimizes functions of the form

E(X) =
∑
i

Ei(Xi), (3)

where X is the set of all variables in the global function E; Ei is a local function
constituting the ith term of E; and Xi is a subset of X containing all variables
that participate in Ei.

To minimize the function E(X), the MSMP algorithm first builds a factor
graph, i.e., an undirected bipartite graph with one partition containing vertices
that represent the variables in X and the other partition containing vertices that
represent the local functions Ei for all i. An edge represents the participation
of a variable in a local function. Furthermore, a message is associated with
each direction of each edge. Intuitively, messages represent interactions between
individual variables and local functions. The value of Ei is the potential of its
corresponding vertex because it is indicative of its “potential” to affect other
vertices. Messages are updated iteratively until convergence. In each iteration,
the message from vertex u to vertex v is influenced by incoming messages to
u as well as u’s potential if it represents a local function. Upon convergence, a
solution can be extracted from the messages.

The MSMP algorithm converges and produces an optimal solution if the fac-
tor graph is a tree [12]. This is, however, not necessarily the case if the factor
graph is loopy [12]. Although the clique tree algorithm alleviates this problem to
a certain extent by first converting loopy graphs to trees [7], the technique only
scales to graphs with low treewidths. If the MSMP algorithm operates directly
on loopy graphs, the theoretical underpinnings of its convergence and optimality
properties still remain poorly understood. Nonetheless, it works well in practice



A correction of equation 5 is available at the end.

Fig. 1. Illustrates the factor graph of a Boolean WCSP instance with 3 variables
{X1, X2, X3} and 3 constraints {C12, C13, C23}. Here, X1, X2 ∈ C12, X1, X3 ∈ C13

and X2, X3 ∈ C23. The circles are variable vertices, and the squares are constraint
vertices. νX1→C12 and ν̂C12→X1 are the messages from X1 to C12 and from C12 to X1,
respectively. Such a pair of messages annotates each edge (not all are explicitly shown).

on a number of important combinatorial problems in artificial intelligence, sta-
tistical physics and signal processing [12, 14]. Examples include the CSP [15],
K-satisfiability [13] and the MVC problem [18]. Unfortunately, the MSMP algo-
rithm has met with little success on the WCSP. In this section, we show how to
revive the MSMP algorithm for the WCSP by using CCGs.

4.1 The MSMP Algorithm Applied Directly on the WCSP

We now describe how the MSMP algorithm can be applied directly to solve the
Boolean WCSP defined by 〈X ,D, C〉. We refer to this as the original MSMP
algorithm. As explained before, we first construct its factor graph. We create a
vertex for each variable in X (variable vertex) and for each weighted constraint
in C (constraint vertex). A variable vertex Xi and a constraint vertex Cj are
connected by an edge if and only if Cj contains Xi. Figure 1 shows an example.

After the factor graph is constructed, a message (two real numbers) for each
of the two directions along each edge is initialized, for instance, to zeros. A pair
of messages νX1→C12 and ν̂C12→X1 is illustrated in Figure 1. The messages are
then updated iteratively by using the min-sum update rules given by

ν
(t)
Xi→Cj

(Xi = xi) =
∑

Ck∈∂Xi\{Cj}

[
ν̂
(t−1)
Ck→Xi

(Xi = xi)
]

+ c
(t)
Xi→Cj

(4)

ν̂
(t)
Cj→Xi

(Xi = xi) = min
a∈A(∂Cj\{Xi})

ECj (a|Xj) +
∑

Xk∈∂Cj\{Xi}

ν
(t)
Xk→Cj

(a|{Xk})


+ ĉ

(t)
Cj→Xi

(5)

for all Xi ∈ X , Cj ∈ C and xi ∈ {0, 1} until convergence [12], where



– ν̂
(t)
Cj→Xi

(Xi = xi) for both xi ∈ {0, 1} are the two real numbers of the
message that is passed from the constraint vertex Cj to the variable vertex
Xi in the tth iteration,

– ν
(t)
Xi→Cj

(Xi = xi) for both xi ∈ {0, 1} are the two real numbers of the
message that is passed from the variable vertex Xi to the constraint vertex
Cj in the tth iteration,

– ∂Xi and ∂Cj are the sets of neighboring vertices of Xi and Cj , respectively,

– Xj is the set of all variables in the constraint Cj , and

– c
(t)
Xi→Cj

and ĉ
(t)
Cj→Xi

are normalization constants such that

min
[
ν
(t)
Xi→Cj

(Xi = 0), ν
(t)
Xi→Cj

(Xi = 1)
]

= 0 (6)

min
[
ν̂
(t)
Cj→Xi

(Xi = 0), ν̂
(t)
Cj→Xi

(Xi = 1)
]

= 0. (7)

The message update rules can be understood as follows. Each message from
a variable vertex Xi to a constraint vertex Cj is updated by summing up all
Xi’s incoming messages from its other neighboring vertices. Each message from
a constraint vertex Cj to a variable vertex Xi is updated by finding the minimum
of the constraint function ECj plus the sum of all Cj ’s incoming messages from
its other neighboring vertices. The messages can be updated in various orders.

We use the superscript ∞ to indicate the values of messages upon conver-
gence. The final assignment of values to variables in X = {X1, X2, . . . , XN} can
then be found by computing

EXi(Xi = xi) ≡
∑

Ck∈∂Xi

ν̂
(∞)
Ck→Xi

(Xi = xi) (8)

for all Xi ∈ X and xi ∈ {0, 1}. Here, EXi
(Xi = 0) and EXi

(Xi = 1) can be
proven to be equal to the minimum values of the total weights conditioned on
Xi = 0 and Xi = 1, respectively. By selecting the value of xi that leads to a
smaller value of EXi

(Xi = xi), we obtain the final assignment of values to all
variables in X .

4.2 The MSMP Algorithm Applied on CCGs

To solve a given WCSP instance, we can first transform it to an MWVC problem
instance on its CCG. We can then apply the MSMP algorithm on the CCG. We
refer to this procedure as the lifted MSMP algorithm.

The MWVC problem on 〈V,E,w〉—where V is the set of vertices, E is the set
of edges, and w is the set of non-negative weights of the vertices—is a subclass
of the Boolean WCSP. Throughout this subsection, we use the variable Xi to
represent the ith vertex in V : Xi = 1 means the ith vertex is selected in the
MWVC, and Xi = 0 means the ith vertex is not selected in the MWVC. The
MWVC problem can therefore be rewritten as a subclass of the Boolean WCSP
with only the following two types of constraints:



– Unary weighted constraints: Each of these weighted constraints corresponds
to a vertex in the MWVC problem. We use CV

i to denote the weighted
constraint that corresponds to the ith vertex. CV

i therefore only has one
variable Xi. In the weighted constraint CV

i , the tuple in which Xi = 1 has
weight wi ≥ 0 and the other tuple has weight zero. This type of weighted
constraints represents the minimization objective of the MWVC problem.

– Binary weighted constraints: Each of these weighted constraints corresponds
to an edge in the MWVC problem. We use CE

j to denote the weighted

constraint that corresponds to the jth edge. The indices of the endpoint
vertices of this edge are denoted by j(+1) and j(−1). CE

j therefore has two

variables Xj(+1) and Xj(−1). In the weighted constraint CE
j , the tuple in

which Xj(+1) = Xj(−1) = 0 has weight infinity and the other tuples have
weight zero. This type of weighted constraints represents the requirement
that at least one endpoint vertex must be selected for each edge.

Given that the MWVC problem is a subclass of the Boolean WCSP, Equa-
tions 4, 5 and 8 can be reused for the MSMP algorithm on it. For the MWVC
problem, these equations can be further simplified. For notational convenience,
we omit normalization constants in the following derivation.

For each of the unary weighted constraints CV
i , we have

– the added weight for selecting a vertex:

ECV
i

(Xi = xi) =

{
wi xi = 1

0 xi = 0
, (9)

– and exactly one variable in CV
i :

∂CV
i \ {Xi} = ∅. (10)

By plugging Equations 9 and 10 into Equation 5 for t =∞, we have

ν̂
(∞)

CV
i →Xi

(Xi = xi) =

{
wi xi = 1

0 xi = 0
(11)

for all CV
i . Note that here we do not need Equation 4 for CV

i since it has only
one variable and thus the message passed to it does not affect the final solution.

For each of the binary weighted constraints CE
j , we have

– the requirement that at least one endpoint vertex must be selected for each
edge:

ECE
j

(Xj(+1) = xj(+1), Xj(−1) = xj(−1)) =

{
+∞ xj(+1) = xj(−1) = 0

0 otherwise
, (12)

– and exactly two variables in CE
j :

∂CE
j \ {Xj(`)} = {Xj(−`)} ∀` ∈ {+1,−1}. (13)



By plugging Equations 11, 12 and 13 into Equations 4 and 5 along with the
fact that there exist only unary and binary weighted constraints, we have

ν
(t)

Xj(`)→CE
j

(Xj(`) = 1) =
∑

Ck∈∂Xj(`)\{CV
j(`)

,CE
j }

[
ν̂
(t−1)
Ck→Xj(`)

(Xj(`) = 1)
]

+ wj(`) (14)

ν
(t)

Xj(`)→CE
j

(Xj(`) = 0) =
∑

Ck∈∂Xj(`)\{CV
j(`)

,CE
j }

ν̂
(t−1)
Ck→Xj(`)

(Xj(`) = 0) (15)

ν̂
(t)

CE
j →Xj(`)

(Xj(`) = 1) = min
a∈{0,1}

ν
(t)

Xj(−`)→CE
j

(Xj(−`) = a) (16)

ν̂
(t)

CE
j →Xj(`)

(Xj(`) = 0) = ν
(t)

Xj(−`)→CE
j

(Xj(−`) = 1) (17)

for all CE
j and both ` ∈ {+1,−1}. By plugging Equations 14 and 15 into Equa-

tions 16 and 17, we have

ν̂
(t)

CE
j →Xj(`)

(Xj(`) = 1) =

min
a∈{0,1}

 ∑
Ck∈∂Xj(−`)\{CV

j(−`)
,CE

j }

[
ν̂
(t−1)
Ck→Xj(−`)

(Xj(−`) = a)
]

+ wj(−`) · a

 (18)

ν̂
(t)

CE
j →Xj(`)

(Xj(`) = 0) =∑
Ck∈∂Xj(−`)\{CV

j(−`)
,CE

j }

[
ν̂
(t−1)
Ck→Xj(−`)

(Xj(−`) = 1)
]

+ wj(−`)
(19)

for all CE
j and both ` ∈ {+1,−1}, where ν̂

(t)

CE
j →Xj(`)

(Xj(`) = b) for both b ∈ {0, 1}
are the two real numbers of the message that is passed from the jth edge to the
j(`)th vertex. Since each edge has exactly two endpoint vertices, the message
from an edge to one of its endpoint vertices can be viewed as a message from
the other endpoint vertex to it. Formally, for the jth edge, we define the message
from the j(+1)th vertex to the j(−1)th vertex in the tth iteration as

µ
(t)

j(+1)→j(−1) ≡ ν̂
(t)

CE
j →Xj(−1)

. (20)

By plugging in Equation 20 and substituting j(`) with i and j(−`) with j,
Equations 18 and 19 can be rewritten (with normalization constants) in the
form of messages between vertices as

µ
(t)
j→i(Xi = 1) = min

a∈{0,1}

 ∑
k∈N(j)\{i}

µ
(t−1)
k→j (Xj = a) + wj · a

 + c
(t)
j→i (21)

µ
(t)
j→i(Xi = 0) =

∑
k∈N(j)\{i}

µ
(t−1)
k→j (Xj = 1) + wj + c

(t)
j→i (22)



for all i and j such that the ith and jth vertices are connected by an edge in E.

Here, N(j) is the set of neighboring vertices of the jth vertex in V and c
(t)
j→i repre-

sents the normalization constant such that min
[
µ
(t)
j→i(Xi = 1), µ

(t)
j→i(Xi = 0)

]
=

0. Equations 21 and 22 are the message update rules of the MSMP algorithm
adapted to the MWVC problem.

If the messages converge, by plugging Equations 11 and 20 into Equation 8,
the final assignment of values to variables can be found by computing

EXi(Xi = xi) =
∑

j∈N(i)

[
µ
(∞)
j→i(Xi = xi)

]
+ wixi, (23)

where the meaning of EXi
(Xi = xi) is similar to that in Equation 8.

5 Experimental Evaluation

In this section, we present experimental evaluations of the NT reduction and
the lifted MSMP algorithm. We used two sets of Boolean WCSP benchmark
instances for our experiments. The first set of benchmark instances is from the
UAI 2014 Inference Competition1. Here, maximum a posteriori (MAP) inference
queries with no evidence on the PR and MMAP benchmark instances can be
reformulated as Boolean WCSP instances by first taking the negative logarithms
of the probabilities in each factor and then normalizing them. The second set
of benchmark instances is from [6]2. This set includes the Probabilistic Infer-
ence Challenge 2011, the Computer Vision and Pattern Recognition OpenGM2
benchmark, the Weighted Partial MaxSAT Evaluation 2013, the MaxCSP 2008
Competition, the MiniZinc Challenge 2012 & 2013 and the CFLib (a library of
cost function networks). The experiments were performed on those benchmark
instances that have only Boolean variables.3

The optimal solutions of the benchmark instances in [6] were computed us-
ing toulbar2 [6]. Since toulbar2 cannot solve WCSP instances with non-integral
weights, the optimal solutions of the benchmark instances from the UAI 2014
Inference Competition were computed by finding MWVCs on their CCGs. For
each benchmark instance, the MWVC problem was solved by first kernelizing it
using the NT reduction, then reformulating it as an ILP [19] and finally solving
the ILP using the Gurobi optimizer [5] with a running time limit of 5 minutes.

For our experiments, we implemented the NT reduction using the Gurobi op-
timizer [5] as the LP solver.4 For the MSMP algorithms, we set the initial values
of all messages to zeros. If no message changed by an amount more than 10−6

1 http://www.hlt.utdallas.edu/~vgogate/uai14-competition/index.html
2 http://genoweb.toulouse.inra.fr/~degivry/evalgm/
3 As shown in [10], our techniques can also be generalized to the WCSP with larger

domain sizes of the variables. However, for a proof of concept, this paper focuses on
the Boolean WCSP.

4 We could have also implemented the NT reduction using a more efficient maxflow
algorithm [4]; but once again, we focus only on the proof of concept in this paper.

http://www.hlt.utdallas.edu/~vgogate/uai14-competition/index.html
http://genoweb.toulouse.inra.fr/~degivry/evalgm/
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(a) Benchmark instances from the UAI 2014 Inference Com-
petition: 19 out of 160 benchmark instances solved by the
NT reduction
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(b) Benchmark instances from [6]: 53 out of 410 benchmark
instances solved by the NT reduction

Fig. 2. Shows the effectiveness of the NT reduction. The x-axis shows the fraction of
variables that are eliminated by the NT reduction. The y-axis shows the number of
benchmark instances on which this happens for a fraction range.

in any iteration, we declared convergence. We used the synchronous message
updating order, i.e., messages were updated in parallel in each iteration. This
standardized the comparison between the two MSMP algorithms, factoring out
the effects of different message updating orders within each iteration. In case of
failure to converge within the time limit (5 minutes) for any benchmark instance,
we reported the solution produced by the MSMP algorithm on that benchmark
instance at the end of that time limit. The CCG construction algorithm and the
MSMP algorithms were implemented in C++ using the Boost graph library [17]
and were compiled by gcc 4.9.2 with the “-O3” option. Our experiments were
performed on a GNU/Linux workstation with an Intel Xeon processor E3-1240
v3 (8MB Cache, 3.4GHz) and 16GB RAM.

Figure 2 shows the effectiveness of the NT reduction on the benchmark in-
stances. The polynomial-time NT reduction solved about 1/8th of these bench-
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(a) Benchmark instances from the UAI 2014 Inference Competition
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(b) Benchmark instances from [6]

Fig. 3. Shows the qualities of the solutions (total weights) produced by the original and
the lifted MSMP algorithms in comparison to the optimal solutions (for benchmark
instances with known optimal solutions). The x-axis shows the suboptimality of the
MSMP solutions. The y-axis shows the number of benchmark instances for a range of
suboptimality. Higher bars on the left are indicative of better solutions.

mark instances yielding empty kernels. Being able to solve this many benchmark
instances without search is indicative of the potential usefulness of the NT re-
duction for solving structured real-world problems.

Figure 3 shows the qualities of the solutions (total weights) produced by the
original MSMP algorithm versus the lifted MSMP algorithm in comparison to
the optimal solutions. A significant fraction of the solutions produced by the
lifted MSMP algorithm are very close to the optimal solutions. However, both
MSMP algorithms produced solutions that are highly suboptimal in the > 30%
suboptimality range. Therefore, Figure 4 presents a direct comparison of the
qualities of the solutions produced by the two MSMP algorithms. From this
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(a) Benchmark instances from the UAI 2014 Inference
Competition: 126/9/18 above/below/close to the diago-
nal dashed line
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(b) Benchmark instances from [6]: 222/68/19
above/below/close to the diagonal dashed line

Fig. 4. (Caption next page.)



Fig. 4. (Figure previous page.) Shows the qualities of the solutions produced by the
original MSMP algorithm in direct comparison to those produced by the lifted MSMP
algorithm for both sets of benchmark instances. Each point in these plots represents
a benchmark instance. The x and y coordinates of a benchmark instance represent
the solution qualities produced by the lifted MSMP algorithm and the original MSMP
algorithm, respectively. Benchmark instances above (red)/below (blue) the diagonal
dashed line have better/worse solution qualities when using the lifted MSMP algorithm
instead of the original MSMP algorithm. Benchmark instances whose MSMP solution
qualities differ by only 1% are considered close (green) to the diagonal dashed line.

figure, it is evident that solution qualities of the lifted MSMP algorithm are
significantly better than those of the original MSMP algorithm.

Benchmark Instance Set Neither Both Original Lifted
UAI 2014 Inference Competition 25 4 124 0

[6] 258 7 44 0

Table 1. Shows the number of benchmark instances on which each MSMP algorithm
converged. The column “Neither”/“Both” indicates the number of benchmark instances
on which neither/both of the MSMP algorithms converged within the time limit of 5
minutes. The column “Original”/“Lifted” indicates the number of benchmark instances
on which only the original/lifted MSMP algorithm converged.

Table 1 shows the number of benchmark instances on which each MSMP al-
gorithm converged within the time limit. Table 2 shows the convergence time and
number of iterations for those benchmark instances on which both algorithms
converged. Although the original MSMP algorithm converged more frequently
and faster, the lifted MSMP algorithm produced better solutions in general. In
addition, both MSMP algorithms are anytime and can be easily implemented in
distributed settings. Therefore, the comparison of the qualities of the solutions
produced is more important than that of the frequency and speed of convergence.

6 Conclusions and Future Work

We studied two important implications of the CCG associated with the WCSP.
First, we showed that the NT reduction popularly used for kernelization of the
MWVC problem can also be applied to the CCG of the WCSP. This leads to a
polynomial-time preprocessing algorithm that fixes the optimal values of a subset
of variables in a WCSP instance. This subset is often the set of all variables:
We observed that the NT reduction could determine the optimal values of all
variables for about 1/8th of the benchmark instances without search.

Second, we revived the MSMP algorithm for solving the WCSP by apply-
ing it on its CCG instead of its original form. We observed not only that the
lifted MSMP algorithm produced solutions that are close to optimal for a large



Benchmark Instance
The Original MSMP The Lifted MSMP
Iterations Running Iterations Running

Time Time
U:PR/relational 2 5 0.84 9 4.00

U:PR/ra.cnf 1 0.35 6 0.34
U:PR/relational 5 5 1.18 3 0.76

U:PR/Segmentation 12 9 0.04 44 0.14
T:MRF/Segmentation/4 30 s.binary 31 0.10 60 0.13
T:MRF/Segmentation/2 28 s.binary 9 0.05 44 0.11
T:MRF/Segmentation/18 10 s.binary 15 0.07 102 0.18
T:MRF/Segmentation/12 20 s.binary 31 0.13 50 0.14
T:MRF/Segmentation/11 3 s.binary 47 0.15 176 0.24
T:MRF/Segmentation/1 28 s.binary 35 0.11 60 0.14
T:MRF/Segmentation/3 20 s.binary 31 0.12 54 0.14

Table 2. Shows the number of iterations and running time for each of the bench-
mark instances on which both MSMP algorithms converged within the time limit of
5 minutes. The column “Benchmark Instance” indicates the name of each benchmark
instance. The “U:” and “T:” at the beginning of the names indicate that they are from
the UAI 2014 Inference Competition and [6], respectively. The columns “Iterations”
and “Running Time” under “The Original MSMP” and “The Lifted MSMP” indicate
the number of iterations and running time (in seconds) after which the original MSMP
algorithm and the lifted MSMP algorithm converged, respectively. With a few excep-
tions, the number of iterations and running time for the original MSMP algorithm are
in general smaller than those of the lifted MSMP algorithm.

fraction of benchmark instances, but also that, in general, it produced signifi-
cantly better solutions than the original MSMP algorithm. Although the lifted
MSMP algorithm requires slightly more work in each iteration since the CCG
is constructed using auxiliary variables, the size of the CCG is only linear in
the size of the tabular representation of the WCSP [9–11], and the lifted MSMP
algorithm has the benefit of producing better solutions. Both MSMP algorithms
employ local message passing techniques that avoid an exponential amount of
computational effort and can be readily adapted to distributed settings as well.

There are many avenues for future work. One is to extend the lifted MSMP
algorithm to handle the WCSP with variables of larger domain sizes. (This
extension already exists in theory [10].) Another one is to develop a distributed
version of the lifted MSMP algorithm using grid/cloud computing facilities. And
a third one is to explore the usefulness of constructing the CCG recursively, i.e.,
constructing the CCG of the MWVC problem instance on the CCG associated
with a WCSP instance, and so on.
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12. Mézard, M., Montanari, A.: Information, Physics, and Computation. Oxford Uni-
versity Press (2009)
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Errata

– Equation 5 should be

ν̂
(t)
Cj→Xi

(Xi = xi) = min
a∈A(∂Cj\{Xi})

ECj (a ∪ {Xi = xi}) +
∑

Xk∈∂Cj\{Xi}

ν
(t)
Xk→Cj

(a|{Xk})

+ĉ
(t)
Cj→Xi

.

In other words, ECj (a|Xj) should be corrected to ECj (a ∪ {Xi = xi}).
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