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Executive Summary

Using the Constraint Composite Graph (CCG) of a WCSP,

• The Nemhauser-Trotter (NT) Reduction, a polynomial-time procedure, can

solve about 1/8 of the benchmark instances without search.

• The Min-Sum Message Passing (MSMP) algorithm, widely used in the

probabilistic reasoning community, produces significantly better solutions on

the CCG than on the WCSP’s original form. This further bridges the

probabilistic reasoning and CP communities.
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The Weighted Constraint Satisfaction Problem: Motivation

Many real-world problems can be solved using the WCSP:

• RNA motif localization (Zytnicki et al. 2008)

• Communication through noisy channels using Error Correcting Codes in

Information Theory (Yedidia et al. 2003)

• Medical and mechanical diagnostics (Milho et al. 2000; Muscettola et al.

1998)

• Energy minimization in Computer Vision (Kolmogorov 2005)

• · · ·
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Weighted Constraint Satisfaction Problem (WCSP)

• N variables x = {X1,X2, . . . ,XN}.
• Each variable Xi has a discrete-valued domain Di .

• M weighted constraints {Es1 ,Es2 , . . . ,EsM}.
• Each constraint Es specifies the weight for each combination of assignments

of values to a subset s of the variables.

• Find an optimal assignment of values to these variables so as to minimize

the total weight: E (x) =
∑M

i=1 Esi (x si ).

• Known to be NP-hard.
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WCSP Example on Boolean Variables
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E (X1,X2,X3) = E1(X1) + E2(X2) + E3(X3)+
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WCSP Example: Evaluate the Assignment X1 = 0,X2 = 0,X3 = 1
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(This is not an optimal solution.) 6



WCSP Example: Evaluate the Assignment X1 = 1,X2 = 0,X3 = 0
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This is an optimal solution. Using brute force, it requires exponential time to find. 7
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Two Forms of Structure in WCSP
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are in which constraints?

• Numerical: How does each
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variables in it?

How can we exploit both forms

of structure computationally?
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Minimum Weighted Vertex Cover (MWVC)
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Each vertex is associated with a non-negative weight. Sum of the weights on the

vertices in the VC is minimized. 9



Projection of Minimum Weighted Vertex Cover

onto an Independent Set

X
1

+

X
3

X
2

X
5

X
6

X
4 X

7∞

1 1

1 1

21

X
1

X
2

X
3

X
4

X
5

X
6

X
7

1

1

1

1

23

1 = necessarily present
in the vertex cover

0 = necessarily absent
from the vertex cover

X
1

1

0

10
X

4

5

4 7

6

1

(Kumar 2008, Fig. 2) 10



Projection of MWVC onto an Independent Set

Assuming Boolean variables in WCSPs

• Observation: The projection of MWVC onto an independent set looks

similar to a weighted constraint.

• Question 1: Can we build the lifted graphical representation for any given

weighted constraint? This is answered by (Kumar 2008).

• Question 2: What is the benefit of doing so?

11



Lifted Representations: Example
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Lifted Representations: Example
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Constraint Composite Graph (CCG)
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MWVC on the Constraint Composite Graph (CCG)
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An MWVC of the CCG encodes an optimal solution of the original WCSP!

Xi ∈ MWVC =⇒ Xi = 1; Xi 6∈ MWVC =⇒ Xi = 0.
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The Nemhauser-Trotter (NT) Reduction
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C and D are in the Kernel
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Experimental Evaluation: Instances

• The UAI 2014 Inference Competition: PR and MMAP benchmark instances

(Up to 10 thousands variables and constraints)

• Converted to WCSP instances by taking negative logarithms normalization.

• WCSP Instances from (Hurley et al. 2016) (Up to less than 1 million

variables and millions of constraints)

• The Probabilistic Inference Challenge 2011

• The Computer Vision and Pattern Recognition OpenGM2 benchmark

• The Weighted Partial MaxSAT Evaluation 2013

• The MaxCSP 2008 Competition

• The MiniZinc Challenge 2012 & 2013

• The CFLib (a library of cost function networks)

• Only instances in which variables have only binary domains are used.
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Experimental Evaluation: Results
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Benchmark instances from UAI 2014 Inference Competition:

19 out of 160 benchmark instances solved by the NT reduction 18
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Min-Sum Message Passing (MSMP) Algorithms

• Min-Sum Message Passing Algorithms

• are variants of belief propagation

• are widely used

• have information passed locally between variables and constraints

• Original MSMP Algorithm

• Perform MSMP on WCSPs directly

• Messages are passed between variables and constraints

• Lifted MSMP Algorithm

• Perform MSMP on the MWVC problem instance of the CCG

• Messages are passed between adjacent vertices
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Operations on Tables: Min

minX1

{
X1

X2
0 1

0 1 2

1 4 3

}
=

X1

0 1

1 3
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Operations on Tables: Sum

X1

X2
0 1

0 1 2

1 4 3

+

X1

0 5

1 6

=
X1

X2
0 1

0 1 + 5 = 6 2 + 5 = 7

1 4 + 6 = 10 3 + 6 = 9
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Original MSMP Algorithm: Message Passing for the WCSP

(Xu et al. 2017, Fig. 1)

• A message is a table over

the single variable, which is

the sender or the receiver.

• A vertex of k neighbors

1. applies sum on the

messages from its k − 1

neighbors and internal

constraint table, and

2. applies min on the

summation result and

sends the resulting table

to its kth neighbor. 23



Original MSMP Algorithm: Example
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Original MSMP Algorithm: Example
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Original MSMP Algorithm: Example
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Original MSMP Algorithm: Example
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Original MSMP Algorithm: Example
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Original MSMP Algorithm: Example

X1

C12

X2

C23

X3

νX1→C12 = 〈0, 0〉−−−−−−−−−−→

−−−−−−−−
−−→

νX3→C23
= 〈0, 0〉

ν̂C12→X2
= 〈0, 1〉

←−−−−−−
−−−−

νX2→C23 = 〈0, 1〉−−−−−−−−−−→

ν̂C23→X3
= 〈0, 2〉

←−−−−−−
−−−−

←−−−−−−−−−−ν̂C23→X2 = 〈0, 1〉

−−−−−−−−
−−→

νX2→C12
= 〈0, 1〉

←−−−−−−−−−−ν̂C12→X1 = 〈1, 0〉

X1

X2
0 1

0 2 3

1 1 2

(a) C12

X2

X3
0 1

0 1 4

1 2 2

(b) C23

24



Original MSMP Algorithm: Example
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Lifted MSMP Algorithm: Finding an MWVC on the CCG

• Treat MWVC problems on the CCG as WCSPs and apply the MSMP

algorithm on it.

• Messages are simplified passed between adjacent vertices.
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Experimental Evaluation: Setup

• Use the same benchmark instances as before.

• Solutions are reported if the MSMP algorithms do not terminate in 5 min.

• Optimal solutions are computed using toulbar2 (Hurley et al. 2016) or

integer linear programming.

• Experiments were performed on a GNU/Linux workstation with an Intel

Xeon processor E3-1240 v3 (8MB Cache, 3.4GHz) and 16GB RAM.
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Experimental Evaluation: Results — Solution Quality
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Experimental Evaluation: Results — Solution Quality
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Experimental Evaluation: Results — Solution Quality
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Experimental Evaluation: Results — Convergence

Benchmark Instance Set Neither Both Original Lifted

UAI 2014 Inference Competition 25 4 124 0

(Hurley et al. 2016) 258 7 44 0

(Xu et al. 2017, Tab. 1)

• Neither: Neither of the MSMP algorithms terminates in 5 min.

• Both: Both of the MSMP algorithms terminate in 5 min.

• Original: Only the original MSMP algorithm terminates in 5 min.

• Lifted: Only the lifted MSMP algorithm terminates in 5 min.
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Conclusion

• NT reduction on the CCG is effective for many benchmark instances.

• The NT reduction could determine the optimal values of all variables for

about 1/8 of the benchmark instances without search.

• We revived the MSMP algorithm for solving the WCSP by applying it on its

CCG instead of its original form.

• The lifted MSMP algorithm produced solutions that are significantly better

than the original MSMP algorithm in general.

• The lifted MSMP algorithm produced solutions that are close to optimal for

a large fraction of benchmark instances.

• However, the lifted MSMP algorithm is less advantageous in terms of

convergence.

• (Future work) Both MSMP algorithms can be easily adjusted to distributed

settings. 31
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