SAGL: A NEW HEURISTIC FOR MULTI-ROBOT ROUTING WITH COMPLEX TASKS

Hong Xu^{*}, T. K. Satish Kumar^{*}, Dylan Johnke[†],
Nora Ayanian^{*} and Sven Koenig^{*}

* University of Southern Calfornia, Los Angeles, CA 90089

[†] Cornell University, Ithaca, NY 14853

ICTAI November 7, 2016

AGENDA

- Complex Routing Problem (CRP)
- Our algorithm: SAGL
- Experimental evaluation: SAGL vs others

AGENDA

- Complex Routing Problem (CRP)
- Our algorithm: SAGL
- Experimental evaluation: SAGL vs others

MOTIVATION

Search-and-rescue: lifting heavy debris (source: https://www.fema.gov/media-library/assets/images/100223)

COMPLEX ROUTING PROBLEM (CRP)

- Multiple homogeneous robots
 - same moving speed
 - same ability to accomplish tasks
- Multiple tasks in different locations
- Some tasks require more than one robots to accomplish
- Cooperative settings
- Solution: Task visitation order for each robot
- Solution evaluation: Makespan (total time required to accomplish all tasks)

COMPLEX ROUTING PROBLEM EXAMPLE

- Cyan: robots
- Yellow: tasks requiring only 1 robot (simple tasks)
- ullet Red: tasks requiring N robots ($N\geq 2$) (complex tasks with a complexity level of N)
- Reduces to TSP-Path if only one robot and no complex tasks.

- State-of-the-art: Approach with Reaction Functions (ARF) [Zheng et al. '08, '11]
 - Based on auction mechanism
 - Produces good solution
 - Does not scale
 - e.g., cannot solve 20 complex tasks with a complexity level of 2 within 1 hour
- SAGL
 - Produces decent solution
 - Polynomial time complexity and scalable
 - Can handle high complexity levels and a large number of complex tasks

AGENDA

- Complex Routing Problem (CRP)
- Our algorithm: SAGL
- Experimental evaluation: SAGL vs others

EMBED COMPLEX ROUTING PROBLEM INTO A GRAPH

We embed a problem instance into a complete undirected edge-weighted graph

- Vertices represent task and robot initial locations.
- Edges represent distances between the locations.

ASSUMPTIONS

- No collisions between robots.
- Distances satisfy the triangle inequality.
- Distances are symmetric.
- All robots move with unit speed.
- All tasks are accomplished immediately once all robots arrive—time span required for accomplishing tasks can be amortized into the incident edges.

SAGL OVERVIEW

- Which robots should visit which tasks
 - 1. Spanning tree construction
 - 2. Task assignment
- What visitation order should the robots use
 - 3. Global visitation order determination for complex tasks
 - 4. Local visitation order determination

WHICH ROBOTS SHOULD VISIT WHICH TASKS

- 1. Spanning tree construction
 - Provides a base for task assignments
- 2. Task assignment

Provides a base for task assignments: inspired by 2-approximation TSP

ASSIGN TASKS TO ROBOTS

According to the distances on the spanning tree.

WHAT VISITATION ORDER SHOULD THE ROBOTS USE

- 1. Global visitation order determination for complex tasks
 - Prevent deadlocks
- 2. Local visitation order determination

DEADLOCKS

- Robot A waits at X forever.
- Robot B waits at Y forever.

GLOBAL VISITATION ORDER OF COMPLEX TASKS

Prevent deadlocks

LOCAL VISITATION ORDER

Path-constrained TSP [Bachrach et al. '05]: Consistent with the global visitation order

AGENDA

- Complex Routing Problem (CRP)
- Our algorithm: SAGL
- Experimental evaluation: SAGL vs others

EXPERIMENT SET 1

- Compared with Approach with Reaction Functions (ARF)
 [Zheng et al. '08, '11]
- Map: 51x51 grid office environment
- 200 CRP instances with random vertices for
 - 10 robots
 - 80 simple tasks
 - various numbers of complex tasks with a complexity level of 2

OFFICE MAP

image source: [Koenig et al. '07]

COMPARED WITH ARF: EFFICIENCY

Percentage of instances solved by ARF within 2 minutes. SAGL solved each of them within one second.

COMPARED WITH ARF: MAKESPAN

EXPERIMENT SET 2

- Large instances
- ARF cannot solve large instances
- Compared with a baseline algorithm
 - No spanning tree
 - Random global visitation order
 - No use of path-constrained TSP
- Map: obstacle free 300x300 continuous square
- 15 CRP instances for random
 - 5, 8 or 10 robots
 - 100, 500 or 1000 tasks
 - max complexity levels of 2, 3 or 4

SAGL VS BASELINE: MAKESPAN VS NUMBER OF TASKS

SAGL VS BASELINE: MAKESPAN VS MAXIMUM COMPLEXITY LEVELS

FUTURE WORK

- Heterogenous robots
- Distributed version
- Flexible complexity levels (task accomplishment time depends on number of robots)

CONCLUSION

- SAGL is
 - A polynomial time solver for the Complex Routing Problem
 - Four steps:
 - 1. Spanning tree construction
 - 2. Task assignment
 - 3. Global visitation order determination for complex tasks
 - 4. Local visitation order determination
 - More scalable than ARF
 - decent solution quality