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Complexity Results

» Both the MVC problem and the MWVC problem are NP-hard
to solve optimally.

» But both problems are amenable to a polynomial-time factor-2
approximation algorithm.

* The MVC problem is fixed-parameter tractable; but the MWVC
problem is not.
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Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) is characterized by:

N discrete-valued variables {X , X, ... X}

Each variable X has a discrete domain D, associated with it,
from which it can take values.

M constraints {C_, C, ... C }

Each constraint C. specifies, for some subset of the variables,
the allowed and disallowed combinations of values to them.

A solution is an assignment of values to all variables from their
respective domains such that all constraints are satisfied.




Weighted CSPs

- Nvariables X, X, ... X,

- Each variable X has a discrete-valued domain D..

- M weighted constraints C, C, ... C

M

- Each constraint C. specifies the cost for every combination of
values to a subset of the variables.

* An optimal solution is an assignment of values to all variables
from their respective domains so that the sum of the costs is
minimized.
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Projections of Minimum Vertex
Covers onto Independent Sets

[Kumar, CP2008; Kumar, ISAIM2008]

X, 0 1 1 = necessatrily present
ol 4 7 in the vertex cover
11 5 6 0 = necessatrily absent
from the vertex cover
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Lifted Representations for Each
Weighted Constraint

[Kumar, CP2008; Kumar, ISAIM2008]
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The Constraint Composite Graph

[Kumar, CP2008; Kumar, ISAIM2008]
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The Constraint Composite Graph

[Kumar, CP2008; Kumar, ISAIM2008]
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A minimum weighted vertex cover of the CCG encodes an optimal
solution to the original WCSP!
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Solving the MWVC Problem

The MVC problem and the MWVC problem are both NP-hard.

There is a very efficient local search solver for the MVC
problem called NuMVC.

But NuMVC cannot be extended to solve the MWV C problem.

- The MVC problem is fixed-parameter tractable.
- This is used critically by NuMVC.




( MWVC as an Integer Linear Program

Minimize Z(ieV) w X
S.t.

forall (ij) € E: X +X 21
foralljie V: X € {0, 1}

Does not work well even with
the best ILP solvers like Gurobi.
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MWVC as a Pseudo-Boolean
Optimization Problem

Minimize Z(ieV) w X
S.t.

forall (ij) € E: X +X 21
foralljie V: X € {0, 1}

Does not work well even wit

h

the best PBO solvers like WBO.
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MWVC as an Answer Set Program

edge(X,Y ) + edge(Y, X )
picked(X ) V picked(Y ) + edge(X,Y)

Does not work well even with the
best ASP solvers like Clingo.




MWYVC as Weighted MAX-SAT

The maximum weighted independent set (MWIS) is the
complement of the MWVC.

The MWIS problem can be encoded as a weighted MAX-SAT
problem as follows:

- for all i € V, add the unit clause X with weight w.

- forall (i, j) € E, add the binary clause (X' v X;) with
weight L

- Lis alarge weight greater than 3 ., w,

Does not work well even with
the best weighted MAX-SAT

solvers like Eva Solver.
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MWVC as Weighted MAX-CLIQUE

« The MWVC problem on a graph is equivalent to the maximum
weighted clique problem on its edge-complement graph.

Does not work well even with
the best MAX-CLIQUE solvers

like Cliquer.
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MWVC as a Series of SAT Instances
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» The decision problem “Is there a vertex cover of weight less
than a test weight w,?” can be cast as a SAT problem.

Works well with a SAT sol
e like Lingeling.
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Optimizations in Binary Search

The MWVC can be found by doing a binary search in the
interval [0, Z(i€V)WJ.

We can do much better by starting with the interval [A/2, A].
Here, A is the cost of the solution produced by a polynomial-
time primal-dual factor-2 approximation algorithm.

Quasi Binary Search can be used instead of Binary Search.
- Let current bounds be [L, U] with w_ = (L+U)/2.

- When the Lingeling SAT solver finds a vertex cover of
weight w < W, the bounds for the next iteration can

be setto [L, w]instead of [L, (L+U)/2].
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Experimental Results
Graph SEBEMS Curobhi cliguer
Imstance |Wertices |MWO || Aunning (Iteration Boundsa Initial RFunning Bounds=s Funning | Bounds
Time Bounds Time Time
fro30-156-1 450 420 49.83 8 - [Z18, 437 Z22.80 - 15.29 -
fre30-15-2 A50 A 20 A B4 =2 - 219, 438] 11.76& - J0.26 -
frie30-15-3 A 50 A 20 AG.22 = - 218, 437] S 05 - 1200.33 -
frie30-15-4 A 50 A 20 A0 38 = - 219, 4389] 29,110 - .90 -
frie30-15-5 A 50 A 20 34.84 =2 - 219, 438] 10.38 - 0.15 -
frie35-17-1 Gah G0 G5.T3 =2 - 202, 6Ed] B4.8T - 14.20 -
frie3fh-17-2 Gah G0 HA.30 =2 - 202, GEd] =T 200 [GG0, BEL] G366 -
frie3s-17-3 Gah HGE0 G697 =2 - 201, BEZ] =T 200 [BG0, BEL] = T2 [-. BEZ]
frie35h-17-4 Galh G0 L5.37 82 - 202, GEd] =T 200 [GG0, BEL1] 5189.27T -
fre3sh-17-5 et HG0 H4.T0O =2 - 2000, GE1] =T 200 [GG0, BEL1] Ga. 84 -
frid40-19-1 TG0 TZ20 BTG =2 - 371, T43] =T 200 [T20, T22] =T 200 [-, 7aa]
frd0-19-2 TE0 T20 131.52 a9 - 372, T45] =T 200 [T20, T22] = T2 [-, 733]
frd0-19-3 TE0 T20 127.73 a9 - ava, T44] =T 200 [T20, T21] 27T3.22 -
friod40-19-4 TE0 TZ20 243.98 o - ava, T44] =T 200 [T20, T22) 155514 -
frd0-19-5 TE0 TZ20 198,27 o - [ava, T45] =T 200 [T20, T22) A2.7TT -
frd5-21-1 SA5 S 2a65.268 a9 - :-'1135, 930 = T 200 B0, EICM.; = T 2O -, QIT:
frbd5-21-2 945 S0 235.59 b2 - (465, 930 =T 200 200, 203 =T 200 -, B1T]
frd5-21-3 945 S0 2036.46 a9 - (465, 930] =T 200 [8D0, 902] = T2 [-, 813]
frid5-21-4 945 S0 S84.90 a9 - (465, 931] =T 200 [8D0, 902) = T2 [-, &14]
frd5-21-5 945 S0 1858.17 a9 - (465, 931] =T 200 200, 903] = T2 [-, @22]
frief50-23-1 1150 1100 S3208.50 14 - [GHG, 1133 =T200 | (1100, 1104 = T200 [-, 1102]
frief50-23-2 1150 1100 =T200 o [L1ewd, L101]|[HE6T, 1135 =T200 | (1100, 1103 = T200 [-. 1113]
frieh0-23-3 1150 110100 111.09 14 - [BET, 1135 =T200 | [1100, 1105 = T 2O [-, 1112]
frieh0-23-4 1150 110100 113.10 14 - [GEGT, 1136 =T200 | (1100, 1104 1868.10 -
fre50-23-5 1150 11010 113.688 14 - [GE&, 1137 =T200 | (1100, 1104 = TR [-. 1129]
frie53-24-1 1272 1219 = T200 =2 [1219, 1221]|[625, 1260 =T200 | (1219, 1225 = T2 [-. 1232]
frie53-24-2 1272 1219 114.87 1 - [625, 12561 =T200 | [1219, 1224 = T2 [-. 1239]
frie53-24-3 1272 1219 = T200 b2 [1z19, 1220]|[62&, 12646 =T200 |[1219, 1224 =T 200 [-. 1237]
frief3-24-4 1272 1219 = T200 b2 [1219, 1220]|[628, 1257 =T200 |[1219, 1224 =T 200 [-. 1228]
freh3-24-5 1272 12149 120.37 14 - [G2T, 1255 =T200 |[1219, 1226 = T2 [-. 1247]
fren6-25-1 1A 1344 = T200 a9 [1344, 1345] | [692, 1384 =T200 |[1344, 1350 = T2 -, 1365
frie56-25-2 I Ealal 1344 =T200 o [1344, 1L345]|[691, 1383 =T200 | (1344, 1352 = T200 [-, 1371]
frief6-25-3 I Ealal 1344 GTLT.BT 14 - [Gaz2, 1384 =T200 | [1344, 1348 = T200 [-. L1377
frien6a-25-4 LA 1344 = T200 a9 [1344, 1L345]|[692, 1385 =T200 | [1344, 1350 = T 2O [-. 1348]
frien6-25-5 LA 1344 120.31 14 - [620, 1381 =T200 | [1344, 1350 = T 2O [-. 1379]
frie59-26-1 1534 1475 = T200 a9 [La7h, 147aE] | [7T6T, 1514 =T200 | [147hH, 1482 = TR [-. 1493]
frieh9-26-2 1534 1475 = T200 a9 [La7h, 147E] | [7TET, 1516 =T200 | [1475H, 1481 = T2 [-. 1513]
frie59-26-3 1534 147T5H = T200 2 [La75, 147a6] | [TET, 1514 =T200 | [1475H, 1482 = T2 [-. 1509]
friehia-26-4 1534 147T5H = T200 =2 [La7TH, 147T]|[THEG, 1513 =T 200 1475, 1481 =T 200 :— 1516
frieh59-26-5 1534 1475 131 .04 14 - THO, 1510 = T 200 1475, 1481 o= T 200 -, 14896

Unweighted BHOSLIB Instances
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Experimental Results

Graph Running Time of SBMS (mins)
Instance |Vertices | MWVC|[Q+CH+N|CH+N|[QFC[Q+N| Q C N |None
frb30-15-1 450 B2h 38.33 [38.32|37.68(60.00135.10(37.49|29.99(35.23
frb30-15-2 450 B35 00.97 |L0.98|58.98|75.12(74.87|50.00(75.00|74.80
frb30-15-3| 450 TaM .84 0.84 |36.43| 0.87 |36.84|36.32| 0.86 |36.73
frb30-15-4| 450 B35 1692 [16.84)14.47(18.7918.33|14.39|18.80|18.71
frb30-15-5| 450 B2T 28.28 (28,34 |4T7.80(27.73143.13[47.77|27.75|44.35

Weighted BHOSLIB Instances
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Figure 2: Shows the evolution of the lower and upper bounds
with the running time of our SAT-based algorithm on the
weighted BHOSLIB instance frb30-15-1. The mid-point of
the interval 1s used as the testing weight for the SAT instance
posed at that time.
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Conclusions and Future Work

The MWVC problem is an important combinatorial problem
that can be used to capture the structure in weighted CSPs.

A feasibility study shows that solving the MWVC problem as a
series of SAT instances outperforms other methods.

In future work, we will use an MWV C solver for efficiently
solving weighted CSPs.

- A new solver for the maximum weighted clique
problem published in [JCAI-2016 can be used to our
advantage.
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