A New Solver for the Minimum Weighted Vertex Cover Problem

Hong Xu, T. K. Satish Kumar, Sven Koenig

Roadmap

- What is the minimum weighted vertex cover (MWVC) problem?
- Why is it so important?
 - weighted constraint satisfaction problems
 - constraint composite graphs
- How do we solve it efficiently?
 - previous approaches
 - proposed method
- Conclusions and future work

Roadmap

- What is the minimum weighted vertex cover (MWVC) problem?
- Why is it so important?
 - weighted constraint satisfaction problems
 - constraint composite graphs
- How do we solve it efficiently?
 - previous approaches
 - proposed method
- Conclusions and future work

Vertex Cover

Minimum Vertex Cover

Minimum Weighted Vertex Cover

Complexity Results

 Both the MVC problem and the MWVC problem are NP-hard to solve optimally.

 But both problems are amenable to a polynomial-time factor-2 approximation algorithm.

The MVC problem is fixed-parameter tractable; but the MWVC problem is not.

Roadmap

- What is the minimum weighted vertex cover (MWVC) problem?
- Why is it so important?
 - weighted constraint satisfaction problems
 - constraint composite graphs
- How do we solve it efficiently?
 - previous approaches
 - proposed method
- Conclusions and future work

Constraint Satisfaction Problems

- A Constraint Satisfaction Problem (CSP) is characterized by:
- N discrete-valued variables {X₁, X₂ ... X_N}
- Each variable X_i has a discrete domain D_i associated with it, from which it can take values.
- M constraints {C₁, C₂ ... C_M}
- Each constraint C_i specifies, for some subset of the variables, the allowed and disallowed combinations of values to them.
- A solution is an assignment of values to all variables from their respective domains such that all constraints are satisfied.

Weighted CSPs

- N variables X₁, X₂ ... X_N
- Each variable X_i has a discrete-valued domain D_i.

- M weighted constraints C₁, C₂ ... C_M
- Each constraint C_i specifies the cost for every combination of values to a subset of the variables.

 An optimal solution is an assignment of values to all variables from their respective domains so that the sum of the costs is minimized.

Example Boolean WCSP

X_1	0	1
0	0.5	0.6
1	0.7	0.3

X_1	0	1
0	0.4	0.9
1	0.7	8.0

Projections of Minimum Vertex Covers onto Independent Sets

[Kumar, CP2008; Kumar, ISAIM2008]

Example Boolean WCSP

X_1	0	1
0	0.5	0.6
1	0.7	0.3

X_1	0	1
0	0.4	0.9
1	0.7	8.0

Lifted Representations for Each Weighted Constraint

[Kumar, CP2008; Kumar, ISAIM2008]

X_1	0	1
0	0.5	0.6
1	0.7	0.3

X ₂ 0.4	$X_3 \bigcirc 0.7$
A_2	0.6

X ₃		V 🔴 0.0
0	0.1	$\begin{array}{c c} X_3 & 0.9 \\ \hline \end{array}$
1	0.9	$A_6 = 0.1$

The Constraint Composite Graph

[Kumar, CP2008; Kumar, ISAIM2008]

The Constraint Composite Graph

[Kumar, CP2008; Kumar, ISAIM2008]

A minimum weighted vertex cover of the CCG encodes an optimal solution to the original WCSP!

Roadmap

- What is the minimum weighted vertex cover (MWVC) problem?
- Why is it so important?
 - weighted constraint satisfaction problems
 - constraint composite graphs
- How do we solve it efficiently?
 - previous approaches
 - proposed method
- Conclusions and future work

Solving the MWVC Problem

The MVC problem and the MWVC problem are both NP-hard.

- There is a very efficient local search solver for the MVC problem called NuMVC.
- But NuMVC cannot be extended to solve the MWVC problem.
 - The MVC problem is fixed-parameter tractable.
 - This is used critically by NuMVC.

MWVC as an Integer Linear Program

Minimize $\sum_{(i \in V)} w_i X_i$ s.t. for all $(i,j) \in E$: $X_i + X_j \ge 1$ for all $i \in V$: $X_i \in \{0, 1\}$

Does not work well even with the best ILP solvers like Gurobi.

MWVC as a Pseudo-Boolean Optimization Problem

Minimize $\sum_{(i \in V)} w_i X_i$ s.t. for all $(i,j) \in E$: $X_i + X_j \ge 1$ for all $i \in V$: $X_i \in \{0, 1\}$

Does not work well even with the best PBO solvers like WBO.

MWVC as an Answer Set Program

$$edge(X,Y) \leftarrow edge(Y,X)$$

$$picked(X) \lor picked(Y) \leftarrow edge(X,Y)$$

Does not work well even with the best ASP solvers like Clingo.

MWVC as Weighted MAX-SAT

- The maximum weighted independent set (MWIS) is the complement of the MWVC.
- The MWIS problem can be encoded as a weighted MAX-SAT problem as follows:
 - for all i ∈ V, add the unit clause X_i with weight w_i
 - for all (i, j) ε E, add the binary clause (X'_i v X'_j) with weight L
 - L is a large weight greater than $\sum_{(i \in V)} w_i$

Does not work well even with the best weighted MAX-SAT solvers like Eva Solver.

MWVC as Weighted MAX-CLIQUE

 The MWVC problem on a graph is equivalent to the maximum weighted clique problem on its edge-complement graph.

> Does not work well even with the best MAX-CLIQUE solvers like Cliquer.

MWVC as a Series of SAT Instances

 The decision problem "Is there a vertex cover of weight less than a test weight w_t?" can be cast as a SAT problem.

Optimizations in Binary Search

- The MWVC can be found by doing a binary search in the interval [0, ∑_(i ∈ V)w_i].
- We can do much better by starting with the interval [A/2, A]. Here, A is the cost of the solution produced by a polynomial-time primal-dual factor-2 approximation algorithm.
- Quasi Binary Search can be used instead of Binary Search.
 - Let current bounds be [L, U] with $w_q = (L+U)/2$.
 - When the Lingeling SAT solver finds a vertex cover of weight w < w_q, the bounds for the next iteration can be set to [L, w] instead of [L, (L+U)/2].

Experimental Results

	Fraph		SBMS				G	urobi	cliquer	
Instance	Vertices	MVC	Running		tion Bounds Initial			Bounds	Running	
			Time			Bounds	Time		Time	
frb30-15-1	450	420	49.83	8	-	[218, 437]	22.80	-	15.29	-
frb30-15-2	450	420	40.84	8	-	[219, 438]	11.76	-	30.26	-
frb30-15-3	450	420	36.22	8	-	[218, 437]	34.05 -		120.33	-
frb30-15-4	450	420	40.38	8	-	[219, 439]	29.10	-	0.99	-
frb30-15-5	450	420	34.84	8	-	[219, 438]	10.38	-	0.15	-
frb35-17-1	595	560	65.73	8	-	[292, 584]	84.87	-	14.20	-
frb35-17-2	595	560	84.39	8	-	[292, 584]	>7200	[560, 561]	53.66	-
frb35-17-3	595	560	66.97	8	-	[291, 582]	>7200	[560, 561]	>7200	[-, 582]
frb35-17-4	595	560	55.37	8	-	[292, 584]	>7200	[560, 561]	5189.27	-
frb35-17-5	595	560	54.70	8	-	[290, 581]	>7200	[560, 561]	98.84	-
frb40-19-1	760	720	90.76	8	-	[371, 743]	>7200	[720, 722]	>7200	[-, 736]
frb40-19-2	760	720	131.52	9	-	[372, 745]	>7200	[720, 722]	>7200	[-, 733]
frb40-19-3	760	720	127.73	9	-	[372, 744]	>7200	[720, 721]	273.22	-
frb40-19-4	760	720	243.98	9	-	[372, 744]	>7200	[720, 722]	1555.14	-
frb40-19-5	760	720	198.27	9	-	[372, 745]	>7200	[720, 722]	42.77	
frb45-21-1	945	900	2955.26	9	-	[465, 930]	>7200	[900, 904]	>7200	[-, 917]
frb45-21-2	945	900	235.59	9	-	[465, 930]	>7200	[900, 903]	>7200	[-, 917]
frb45-21-3	945	900	2036.46	9	-	[465, 930]	>7200	[900, 902]	>7200	[-, 913]
frb45-21-4	945	900	884.90	9	-	[465, 931]	>7200	[900, 902]	>7200	[-, 914]
frb45-21-5	945	900	1958.17	9	-	[465, 931]	>7200	[900, 903]	>7200	[-, 922]
frb50-23-1	1150	1100	3208.50	10		[556, 1133]	>7200	[1100, 1104]	>7200	[-, 1102]
frb50-23-2	1150	1100	>7200	9	[1100, 1101]	[567, 1135]	>7200	[1100, 1103]	>7200	[-, 1113]
frb50-23-3	1150	1100	111.09	10	-	[567, 1135]	>7200	[1100, 1105]	>7200	[-, 1112]
frb50-23-4	1150	1100	113.10	10	-	[567, 1135]	>7200	[1100, 1104]	1868.10	
frb50-23-5	1150	1100	113.68	10		[568, 1137]	>7200	[1100, 1104]	>7200	[-, 1129]
frb53-24-1	1272	1219	>7200	8	[1219, 1221]	[625, 1250]	>7200	[1219, 1225]	>7200	[-, 1232]
frb53-24-2	1272	1219	114.87	10		[625, 1251]	>7200	[1219, 1224]	>7200	[-, 1239]
frb53-24-3	1272	1219	>7200	9	[1219, 1220]	[628, 1256]	>7200	[1219, 1224]	>7200	[-, 1237]
frb53-24-4	1272	1219	>7200	9	[1219, 1220]	[628, 1257]	>7200	[1219, 1224]	>7200	[-, 1228]
frb53-24-5	1272	1219	120.37	10	[1044 1045]	[627, 1255]	>7200	[1219, 1226]	>7200	[-, 1247]
frb56-25-1	1400	1344	>7200	9	[1344, 1345]	[692, 1384]	>7200	[1344, 1350]	>7200	[-, 1365]
frb56-25-2	1400	1344	>7200	9	[1344, 1345]	[691, 1383]	>7200	[1344, 1352]	>7200	[-, 1371]
frb56-25-3	1400	1344	6717.57	10	[1044 1045]	[692, 1384]	>7200	[1344, 1348]	>7200	[-, 1377]
frb56-25-4	1400	1344	>7200	9	[1344, 1345]	[692, 1385]	>7200	[1344, 1350]	>7200	[-, 1348]
frb56-25-5	1400	1344	120.31	10	[1.475 1.470]	[690, 1381]	>7200	[1344, 1350]	>7200	[-, 1379]
frb59-26-1	1534	1475	>7200	9	[1475, 1476]	[757, 1514]	>7200	[1475, 1482]	>7200	[-, 1493]
frb59-26-2	1534	1475	>7200	9	[1475, 1476]	[757, 1515]	>7200	[1475, 1481]	>7200	[-, 1513]
frb59-26-3	1534 1534	1475	>7200	9	[1475, 1476]	[757, 1514]	>7200	[1475, 1482]	>7200	[-, 1509]
frb59-26-4 frb59-26-5	1534	1475	>7200 131.04	8 10	[1475, 1477]	[756, 1513] [759, 1519]	>7200 >7200	[1475, 1481] [1475, 1481]	>7200 >7200	[-, 1516] [-, 1496]
11009-20-0	1004	14/0	131.04	10	-	[108, 1018]	/1200	[1475, 1461]	/1200	[2, 1490]

Unweighted BHOSLIB Instances

Experimental Results

Graph			Running Time of SBMS (mins)							
Instance	Vertices	MWVC	Q+C+N	C+N	Q+C	Q+N	ď	C	N	None
frb30-15-1	450	825	38.33	38.32	37.68	60.00	35.10	37.49	29.99	35.23
frb30-15-2	450	825	59.97	59.98	58.98	75.12	74.87	59.00	75.00	74.80
frb30-15-3	450	790	0.84	0.84	36.43	0.87	36.84	36.32	0.86	36.73
frb30-15-4	450	825	16.92	16.84	14.47	18.79	18.33	14.39	18.80	18.71
frb30-15-5	450	827	28.28	28.34	47.80	27.73	43.13	47.77	27.75	44.35

Weighted BHOSLIB Instances

Diminishing Returns Property

Figure 2: Shows the evolution of the lower and upper bounds with the running time of our SAT-based algorithm on the weighted BHOSLIB instance frb30-15-1. The mid-point of the interval is used as the testing weight for the SAT instance posed at that time.

Roadmap

- What is the minimum weighted vertex cover (MWVC) problem?
- Why is it so important?
 - weighted constraint satisfaction problems
 - constraint composite graphs
- How do we solve it efficiently?
 - previous approaches
 - proposed method
- Conclusions and future work

Conclusions and Future Work

- The MWVC problem is an important combinatorial problem that can be used to capture the structure in weighted CSPs.
- A feasibility study shows that solving the MWVC problem as a series of SAT instances outperforms other methods.
- In future work, we will use an MWVC solver for efficiently solving weighted CSPs.
 - A new solver for the maximum weighted clique problem published in IJCAI-2016 can be used to our advantage.