
Citation: Masaru Nakajima, Hong Xu, Sven Koenig, and T. K. Satish Kumar. Towards understanding the min-sum message passing algorithm for
the minimum weighted vertex cover problem: An analytical approach. In Proceedings of the 15th International Symposium on Artificial Intelligence
and Mathematics (ISAIM). 2018.

Towards Understanding the Min-Sum Message Passing Algorithm for
the Minimum Weighted Vertex Cover Problem: An Analytical Approach

Masaru Nakajima* Hong Xu* Sven Koenig T. K. Satish Kumar
University of Southern California, Los Angeles, California 90089, the United States of America

{masarun,hongx,skoenig}@usc.edu tkskwork@gmail.com

Abstract

Given a vertex-weighted undirected graph G = 〈V,E,w〉,
the minimum weighted vertex cover (MWVC) problem is to
find a subset of vertices with minimum total weight such that
every edge in the graph has at least one of its endpoints in
it. The MWVC problem and its amenability to the min-sum
message passing (MSMP) algorithm remain understudied de-
spite the common occurrence of the MWVC problem and the
common use of the MSMP algorithm in many areas of AI.
In this paper, we first develop the MSMP algorithm for the
MWVC problem that can be viewed as a generalization of
the warning propagation algorithm. We then study properties
of the MSMP algorithm for the MWVC problem on a special
class of graphs, namely single loops. We compare our ana-
lytical results with experimental observations and argue that:
(a) Our analytical framework is powerful in accurately pre-
dicting the behavior of the MSMP algorithm on the MWVC
problem, and (b) for a given combinatorial optimization prob-
lem, it may be more effective to apply the MSMP algorithm
on the MWVC problem that is equivalent to the given prob-
lem, instead of applying the MSMP algorithm on the given
problem directly.

Introduction
Given an undirected graph G = 〈V,E〉, a vertex cover (VC)
of G is defined as a subset of vertices S ⊆ V such that
every edge in E has at least one of its endpoint vertices in
S. A minimum vertex cover (MVC) of G is a vertex cover
of minimum cardinality. When G is vertex-weighted—i.e.,
each vertex vi ∈ V has a non-negative weight wi associated
with it—the minimum weighted vertex cover (MWVC) for
it is defined as a vertex cover of minimum total weight. The
MVC/MWVC problem is to find an MVC/MWVC.

Two important combinatorial optimization problems
equivalent to the MVC problem are the maximum indepen-
dent set (MIS) problem and the maximum clique (MC) prob-
lem (Cormen et al. 2009). The MVC problem and its equiv-
alent MIS and MC problems have numerous real-world ap-
plications such as in AI scheduling, logistics and operations
management, and VLSI design (Cai et al. 2013). More re-
cent applications have also been discovered in information
retrieval, signal processing, and sequence alignment in com-
putational genomics (Johnson and Trick 1996).

*Masaru Nakajima and Hong Xu are both first authors.

Since the MVC problem is a special case of the MWVC
problem, the latter not only captures all of the real-world
combinatorial optimization problems that the MVC problem
can model but also captures a wide range of additional com-
binatorial optimization problems central to AI. For exam-
ple, consider a simple combinatorial auction problem (Sand-
holm 2002). We are given a set of items with bids placed
on subsets of the items. Each bid has a valuation. The goal
is to pick a set of winning bids that maximizes the total
valuation—i.e., the revenue of the auctioneer—such that the
set of items of the winning bids are pairwise disjoint. This
can be modeled as the maximum weighted independent set
(MWIS) problem—equivalent to the MWVC problem—on
a graph constructed as follows: We create a vertex for each
bid such that the weight of the vertex is equal to the valu-
ation of that bid. Two vertices are connected by an edge if
and only if their corresponding bids have a non-empty inter-
section. The winning bids correspond to the vertices in the
MWIS of the graph.

While there are some reasonably good solvers for the
MVC problem, the MWVC problem remains understud-
ied. Clearly, the MWVC problem, as a generalization of
the MVC problem, is harder to solve efficiently. Exact al-
gorithms (Niskanen and Östergård 2003; Xu, Kumar, and
Koenig 2016) are not expected to do well for large instances
of the MWVC problem simply because they do not scale
well even for large instances of the MVC problem. More-
over, the local search techniques used in the best solvers
for the MVC problem are also not expected to generalize
well to the MWVC problem because the MVC problem
is fixed-parameter tractable while the MWVC problem is
not (Chen, Kanj, and Xia 2006). The local search solvers
for the MVC problem (Richter, Helmert, and Gretton 2007;
Cai et al. 2013) heavily rely on this property as they solve the
fixed-parameter vertex cover problem in their inner loops.

The MWVC problem is not only known to be hard, but
is also understudied for its amenability to many popular al-
gorithmic techniques. One such widely used technique is
message passing. The min-sum message passing (MSMP)
algorithm, a special type of the message passing algorithm,
is a well known technique for solving many combinatorial
optimization problems across a wide range of fields, such
as probabilistic reasoning, artificial intelligence, statistical
physics, and information theory (Mézard and Montanari

2009; Yedidia, Freeman, and Weiss 2003). It is based on lo-
cal information processing and communication, and avoids
an exponential time complexity with respect to the size of
the problem. It works well in practice on many combinato-
rial optimization problems such as those that arise in statisti-
cal physics, computer vision, error-correcting coding theory,
or, more generally, on graphical models such as Bayesian
networks and Markov random fields (Yedidia, Freeman,
and Weiss 2003). It has also been used to study problems
such as K-satisfiability (Mézard and Zecchina 2002) and the
weighted constraint satisfaction problem (WCSP) (Xu, Ku-
mar, and Koenig 2017). Although the MSMP algorithm con-
vergences and guarantees correctness when the variable in-
teractions form a tree, a complete theoretical analysis of its
convergence and correctness for the general case is elusive.

Despite the individual importance of the MWVC prob-
lem and the MSMP algorithm, a detailed study of the ef-
fectiveness and properties of the MSMP algorithm applied
to the MWVC problem has been missing. In this paper, we
first develop the MSMP algorithm for the MWVC prob-
lem that can be viewed as a generalization of the warning
propagation (WP) algorithm. We then study properties of
the MSMP algorithm for the MWVC problem. We compare
our analytical results with experimental observations, and
argue that: (a) Our analytical framework is powerful in ac-
curately predicting the behavior of the MSMP algorithm on
the MWVC problem, and (b) for a given combinatorial op-
timization problem, it may be more effective to apply the
MSMP algorithm on the MWVC problem that is equivalent
to the given problem, instead of applying the MSMP algo-
rithm on the given problem directly.

Related Work
(Weigt and Zhou 2006) derive the sizes of MVCs on infinite
Erdös-Re̋nyi (ER) random graphs (Erdős and Rényi 1959)
by using the WP algorithm. They show that, on an infinite
ER random graph with connectivity c < e, the size of an
MVC is 1 − W (c)

c − W (c)2

2c , where W (·) is the Lambert-W
function. Here, connectivity is the minimum number of ele-
ments (vertices or edges) that need to be removed to discon-
nect the remaining vertices from each other and e is the Eu-
ler’s number. They derive this result using the convergence
condition and equations for solution extraction of the WP
algorithm. However, they do not mention any possible ex-
tension of their work to the MWVC problem.

Min-Sum Message Passing for the WCSP
We now review how the MSMP algorithm can be applied to
solve the Boolean WCSP (Xu, Kumar, and Koenig 2017).
This review is important for a proper explanation of the de-
velopment of the MSMP algorithm on the MWVC prob-
lem. The WCSP is defined by a triplet 〈X ,D, C〉, where
X = {X1, X2, . . . , XN} is a set of N variables, D =
{D(X1), D(X2), . . . , D(XN)} is a set of N domains with
discrete values, and C = {C1, C2, . . . , CM} is a set of M
weighted constraints. Each variable Xi ∈ X can be as-
signed a value in its associated domain D(Xi) ∈ D. Each
constraint Ci ∈ C is defined over a subset of the variables

X1 C12

X2 C23

X3 C13

νX1→C12−−−−−→
←−−−−−
ν̂C12→X1

Figure 1: Illustrates the factor graph of a Boolean WCSP
instance with 3 variables {X1, X2, X3} and 3 constraints
{C12, C13, C23}. Here, X1, X2 ∈ S(C12), X1, X3 ∈
S(C13) and X2, X3 ∈ S(C23). The circles are variable ver-
tices, and the squares are constraint vertices. νX1→C12 and
ν̂C12→X1 are the messages from X1 to C12 and from C12

to X1, respectively. Such a pair of messages annotates each
edge (not all are explicitly shown).

S(Ci) ⊆ X , called the scope of Ci. Ci associates a non-
negative weight with each possible assignment of values to
the variables in S(Ci). The goal is to find a complete as-
signment of values to all variables in X from their respec-
tive domains that minimizes the sum of the weights spec-
ified by each constraint in C (Bistarelli et al. 1999). Such
assignment is called an optimal solution. This combinatorial
task can equivalently be characterized by having to compute
arg mina∈A(X)

∑
Ci∈C ECi

(a|S(Ci)), where A(X) repre-
sents the set of all |D(X1)| × |D(X2)| × . . . × |D(XN)|
complete assignments to all variables in X . a|S(Ci) rep-
resents the projection of a complete assignment a onto the
subset of variables in S(Ci). ECi is a constraint function
that maps each a|S(Ci) to its associated weight in Ci. The
Boolean WCSP is the WCSP with only variables of domain
size 2, i.e., ∀Xi ∈ X : |D(Xi)| = 2. It is representationally
as powerful as the WCSP.

To apply the MSMP algorithm to the Boolean WCSP, we
first construct its factor graph. We create a vertex for each
variable in X (variable vertex) and for each weighted con-
straint in C (constraint vertex). A variable vertex Xi and a
constraint vertex Cj are connected by an edge if and only
if Xi ∈ S(Cj). Figure 1 shows an example.After the factor
graph is constructed, a message (two real numbers) for each
of the two directions along each edge is initialized, for in-
stance, to zeros. A pair of messages νX1→C12

and ν̂C12→X1

is illustrated in Figure 1. The messages are then updated it-

eratively by using the min-sum update rules given by

ν
(t)
Xi→Cj

(xi) =
∑

Ck∈∂Xi\{Cj}

[
ν̂
(t−1)
Ck→Xi

(xi)
]

+ c
(t)
Xi→Cj

(1)

ν̂
(t)
Cj→Xi

(xi) = min
a∈A(∂Cj\{Xi})

[
ECj

(a ∪ {Xi = xi})

+
∑

Xk∈∂Cj\{Xi}

ν
(t)
Xk→Cj

(a|{Xk})
]

+ ĉ
(t)
Cj→Xi

,

(2)

for all Xi ∈ X , Cj ∈ C, xi ∈ {0, 1}, and all t > 0 until
convergence (Mézard and Montanari 2009), where

• ν̂(t)Cj→Xi
(xi) for both xi ∈ {0, 1} are the two real numbers

of the message that is passed from constraint vertex Cj to
variable vertex Xi in the tth iteration,

• ν(t)Xi→Cj
(xi) for both xi ∈ {0, 1} are the two real numbers

of the message that is passed from variable vertex Xi to
constraint vertex Cj in the tth iteration,

• ∂Xi and ∂Cj are the sets of neighboring vertices of Xi

and Cj , respectively, and

• c(t)Xi→Cj
and ĉ

(t)
Cj→Xi

are normalization constants such
that

min
[
ν
(t)
Xi→Cj

(0), ν
(t)
Xi→Cj

(1)
]

= 0 (3)

min
[
ν̂
(t)
Cj→Xi

(0), ν̂
(t)
Cj→Xi

(1)
]

= 0. (4)

The message update rules can be understood as follows.
Each message from a variable vertex Xi to a constraint
vertex Cj is updated by summing up all of Xi’s incoming
messages from its other neighboring vertices. Each message
from a constraint vertex Cj to a variable vertex Xi is up-
dated by finding the minimum of the constraint functionECj

plus the sum of all of Cj’s incoming messages from its other
neighboring vertices. The messages can be updated in vari-
ous orders.

We remove the superscript (t) on messages to indicate the
values of messages upon convergence. The final assignment
of values to variables in X = {X1, X2, . . . , XN} is then
found by computing

EXi
(Xi = xi) =

∑
Ck∈∂Xi

ν̂Ck→Xi
(xi) (5)

for all Xi ∈ X and xi ∈ {0, 1}. Here, EXi(Xi = 0) and
EXi(Xi = 1) can be proven to be the minimum values of the
total weights conditioned on Xi = 0 and Xi = 1, respec-
tively. By selecting the value of xi that leads to a smaller
value of EXi

(Xi = xi), we obtain the final assignment of
values to all variables in X .

The MSMP algorithm converges and produces an optimal
solution if the factor graph is a tree. However, it is not nec-
essarily the case if the factor graph is loopy (Mézard and
Montanari 2009). Although the clique tree algorithm allevi-
ates this problem to a certain extent by first converting loopy

graphs to trees (Koller and Friedman 2009), the technique
only scales to graphs with low treewidths. If the MSMP al-
gorithm operates directly on loopy graphs, the theoretical
underpinnings of its convergence and optimality properties
still remain poorly understood.

In this context, our contribution is to provide the first an-
alytical framework for a theoretical analysis of the MSMP
algorithm for the MWVC problem with a loopy structure.
Although our analysis is restricted to the MWVC prob-
lem, it provides a useful handle on the general case as
well because the WCSP is reducible to the MWVC prob-
lem on its constraint composite graph (Kumar 2008a; 2008b;
2016).

Message Passing for the MWVC Problem
We first reformulate the MWVC problem as a subclass of the
Boolean WCSP in order to make the MSMP algorithm ap-
plicable to it. Since this subclass of the Boolean WCSP con-
tains only specific types of constraints, all equations used in
the MSMP algorithm for the Boolean WCSP can be simpli-
fied for the MWVC problem. Here, we use an approach sim-
ilar to (Xu, Kumar, and Koenig 2017) to derive these simpli-
fied message update equations. For notational convenience,
we omit the normalization constants in the following deriva-
tion.

For an MWVC problem instance P on a graph G =
〈V,E,w〉, we associate a variable Xi ∈ {0, 1} with each
vertex i ∈ V . Xi represents the presence of i in the to-be-
determined MWVC. P has two types of constraints:

• Unary weighted constraints: A unary weighted constraint
corresponds to a vertex in G. We use Ci to denote the
unary weighted constraint that corresponds to the vertex
i. Ci therefore has only one variable Xi in its scope. In
the weighted constraint Ci, the tuple in which Xi = 1 has
weight wi ≥ 0 and the other tuple has weight zero. This
type of weighted constraint represents the minimization
objective of the MWVC problem. Formally, we have

ECi(Xi) =

{
wi if Xi = 1

0 if Xi = 0
. (6)

• Binary weighted constraints: A binary weighted con-
straint corresponds to an edge in G. We use Cij to de-
note the binary weighted constraint that corresponds to
the edge {i, j}. Cij has two variable Xi and Xj in its
scope. The tuple where Xi = Xj = 0 has weight in-
finity, and the other tuples have weight zero. This type
of constraint represents the requirement that at least one
endpoint vertex must be in the MWVC for each edge. For-
mally, we have

ECij
(Xi, Xj) =

{
+∞ if Xi = Xj = 0

0 if otherwise
. (7)

We build the factor graph GP for P . Then, we have

∂Ci \ {Xi} = ∅ (8)
∂Cij \ {Xi} = {Xj}. (9)

By plugging Equations (6) and (8) into Equation (2), we
have

ν̂
(t)
Ci→Xi

(xi) =

{
wi if xi = 1

0 if xi = 0
(10)

for all Ci. Note that we do not need Equation (1) for Ci here
since it has only one variable and thus the message passed
to it does not affect the final solution.

By plugging Equations (7), (9) and (10) into Equations (1)
and (2) along with the fact that there exist only unary and
binary constraints, we have

ν
(t)
Xi→Cij

(1) =
∑

C∈∂Xi\{Ci,Cij}

[
ν̂
(t−1)
C→Xi

(1)
]

+ wi (11)

ν
(t)
Xi→Cij

(0) =
∑

C∈∂Xi\{Ci,Cij}

ν̂
(t−1)
C→Xi

(0) (12)

ν̂
(t)
Cij→Xi

(1) = min
b∈{0,1}

ν
(t)
Xj→Cij

(b) (13)

ν̂
(t)
Cij→Xi

(0) = ν
(t)
Xj→Cij

(1) (14)

for all edges {i, j}. By plugging Equations (11) and (12)
into Equations (13) and (14), we have

ν̂
(t)
Cij→Xi

(1) = min
b∈{0,1}

[∑
C∈∂Xj\{Cj ,Cij}

[
ν̂
(t−1)
C→Xj

(b)
]

+ wj · b
]

(15)

ν̂
(t)
Cij→Xi

(0) =
∑

C∈∂Xj\{Cj ,Cij}

[
ν̂
(t−1)
C→Xj

(1)
]

+ wj (16)

for all edges {i, j}, where ν̂(t)Cij→Xi
(b) for both b ∈ {0, 1}

are the two real numbers of the message that is passed from
the edge {i, j} to the vertex i. Since each edge has exactly
two endpoint vertices, the message from an edge to one of
its endpoint vertices can be viewed as a message from the
other endpoint vertex to it. In addition, since we always nor-
malize the messages during message passing (we omit the
normalization constants in the equations above) by subtract-
ing a number such that minb∈{0,1}

[
ν̂
(t)
Cij→Xi

(b)
]

= 0, and

ν̂
(t)
Cij→Xi

(1) ≤ ν̂
(t)
Cij→Xi

(0) always holds, we only need to
pass one number between adjacent vertices instead of two.
Formally, we define the message from vertex i to vertex j in
the tth iteration as

ν
(t)
j→i ≡ ν̂

(t)
Cij→Xi

(0)− ν̂(t)Cij→Xi
(1), (17)

for edge {i, j}. By plugging Equations (15) and (16) into
Equation (17), we have the message update rules rewritten

in the form of messages between vertices in G as

ν
(t)
j→i =

∑
C∈∂Xj\{Cj ,Cij}

[
ν̂
(t−1)
C→Xj

(1)
]

+ wj

−min

 ∑
C∈∂Xj\{Cj ,Cij}

[
ν̂
(t−1)
C→Xj

(0)
]
,

∑
C∈∂Xj\{Cj ,Cij}

[
ν̂
(t−1)
C→Xj

(1)
]

+ wj

= max{
wj −

∑
C∈∂Xj\{Cj ,Cij}

[
ν̂
(t−1)
C→Xj

(0)− ν̂(t−1)C→Xj
(1)
]
, 0

}

= max

wj − ∑
k∈N(j)\i

ν
(t−1)
k→j , 0

(18)

for edges {i, j}, where N(j) is the set of neighboring ver-
tices of j in G. Equation (18) is the message update rule of
the MSMP algorithm adapted to the MWVC problem.

Using Equations (5) and (18), the decision of whether or
not to include vertex i in the MWVC is made by calculating

EXi
(Xi = 0)− EXi

(Xi = 1)

=
∑

C∈∂Xi

ν̂C→Xi(0)−
∑

C∈∂Xi

ν̂C→Xi(1)

=
∑

Cij∈∂Xi

[
ν̂Cij→Xi

(0)− ν̂Cij→Xi
(1)
]
− wi

=
∑

j∈N(i)

νj→i − wi.

(19)

Equation (19) suggests that vertex i is in the MWVC if
wi ≤

∑
j∈N(i) νj→i; vertex i is not in the MWVC if

wi >
∑
j∈N(i) νj→i. The case of wi =

∑
j∈N(i) νj→i,

however, is often extremely rare for many vertex weight
distributions and can always be avoided in practice by per-
turbing the weights. Here, for theoretical analysis, we will
select such a vertex i into the MWVC with probability 1

2 .
Equation (18) is reduced to WP for the MVC problem if
∀i ∈ V : wi = 1 (Weigt and Zhou 2006).

Here we argue by contradiction that the MSMP algorithm
for the MWVC problem always outputs a VC if it converges.
We assume that neither of the two adjacent vertices i and j
is selected in the MWVC. Then, we have

νj→i + ν→i < wi (20)
νi→j + ν→j < wj , (21)

where ν→i =
∑
k∈N(i)\j νk→i and ν→j =∑

k∈N(j)\i νk→j . These two equations also imply that,
Equation (18) for νj→i and νi→j can have the max operator
removed. Then, we have

νj→i = wj − ν→j (22)
νi→j = wi − ν→i. (23)

By plugging Equations (22) and (23) into Equations (20)
and (21), we have

wj − ν→j + ν→i < wi (24)
wi − ν→i + ν→j < wj . (25)

Adding these two equations, we have wi + wj < wi + wj ,
which is a contradiction.

The Probability Distribution of The Messages
We assume that the MWVC problem is posed on an in-
finitely large random graph that is generated according to
a given random graph model. We assume that, upon conver-
gence of the MSMP algorithm, the probability distribution
of a message depends only on the weight of its sender. We
use f(νi→j ;wi) to denote the probability density function
by which a vertex i with weight wi sends the message νi→j
to its adjacent vertex j. f(νi→j ;wi) can be calculated ac-
cording to the joint probability distribution of the messages
from all the adjacent vertices of i excluding j. Here, we use
our approach for analyzing the behavior of the MSMP algo-
rithm on graphs with a single loop (each vertex has exactly
two adjacent vertices) with vertex weight distribution g(w).
For all wi ≥ 0, the cumulative probability function of νi→j
has the form
F (νi→j ;wi) = Θ(νi→j)P (0;wi) + Fm(νi→j ;wi)

+ Θ(νi→j − wi)P (wi;wi),
(26)

where P (0;wi) and P (wi;wi) are the probabilities of
νi→j = 0 and νi→j = wi, respectively; Fm(νi→j ;wi) is
assumed to be, with respect to νi→j , smooth in the interval
(0, wi) and constant in (−∞, 0] and [wi,+∞); and Θ(·) is
a step function

Θ(x) =

{
1, if x ≥ 0

0, if x < 0.
(27)

Here, the first and third terms of Equation (26) are used to
capture the step function-like behavior of the messages as
evident in Equation (18) due to the effect of the max opera-
tor. By taking the derivative of F (νi→j ;wi) with respect to
νi→j , we have the probability density function of νi→j of
the form
f(νi→j ;wi) = δ(νi→j)P (0;wi) + fm(νi→j ;wi)

+ δ(νi→j − wi)P (wi;wi),
(28)

where fm(νi→j ;wi) = ∂Fm(νi→j ;wi)/∂νi→j , and δ(·) is
a delta function defined to satisfy

∀ function q(·),∀a < b :∫ b

a

dx q(x)δ(x) =

{
q(0) if b ≥ 0 ∧ a < 0

0 otherwise
.

(29)

We note that, based on the assumption on Fm(νi→j ;wi),
fm(νi→j ;wi) is, with respect to νi→j , a smooth function in
the interval (0, wi) and 0 elsewhere.

We now find the expressions for P (0;wi), fm(νi→j ;wi),
and P (wi;wi). Equation (18) implies

∀{i, j} ∈ E : νi→j ≤ wi. (30)

Also, upon convergence, Equation (18) becomes

νi→j =

wi if νk→i = 0

wi − νk→i if 0 < νk→i < wi
0 if νk→i ≥ wi,

(31)

where vertex k vertex is adjacent to vertex i.
We first consider fm(νi→j ;wi). Since fm(νi→j ;wi) = 0

for νi→j ≤ 0 and νi→j ≥ wi, we focus on the range
0 < νi→j < wi. This condition corresponds to the second
case of Equation (31), i.e., νk→i = wi − νi→j . The proba-
bility density with which vertex k with weight ranging from
wk to wk + dwk sends the message νk→i = wi − νi→j is
dwk g(wk)f(wi − νi→j ;wk). Taking the integral over the
weight distribution, we obtain

fm(νi→j ;wi) =

∫ +∞

(wi−νi→j)
−

dwk g(wk)f(wi − νi→j ;wk)

=

∫ +∞

(wi−νi→j)
−

dwk g(wk)δ(wi − νi→j)P (0;wk)

+

∫ +∞

wi−νi→j

dwk g(wk)fm(wi − νi→j ;wk)

+

∫ +∞

(wi−νi→j)
−

dwk g(wk)δ(wi − νi→j − wk)P (wk;wk)

(32)

for 0 < νi→j < wi, where the lower integration limit is im-
posed by Equation (30), i.e., wk ≥ νk→i = wi − νi→j , and∫
(wi−νi→j)

− is short for limε→0+
∫
(wi−νi→j)−ε. The first

term vanishes, since in the Delta function, wi − νi→j > 0.
In order to analyze P (0;wi), which corresponds to the

third case of Equation (31), we assume that νk→i ≥ wi.
This inequality imposes the condition wk ≥ wi; other-
wise, Equation (30) would prohibit the vertex k from send-
ing a message such that νk→i ≥ wi. Given such wk, the
probability with which the vertex k with weight ranging
from wk to wk + dwk sends the message νk→i (≥ wi)
is dwk g(wk)

∫ wk

w−i
dνk→i f(νk→i;wk). Taking the integral

over the weight distribution, we obtain

P (0;wi) =

∫ +∞

w−i

dwk g(wk)

∫ wk

w−i

dνk→i f(νk→i;wk)

=

∫ +∞

w−i

dwk g(wk)

∫ wk

w−i

dνk→i δ(νk→i)P (0;wk)

+

∫ +∞

w−i

dwk g(wk)

∫ wk

w−i

dνk→i fm(νk→i;wk)

+

∫ +∞

w−i

dwk g(wk)

∫ wk

w−i

dνk→i δ(νk→i − wk)P (wk;wk).

(33)

As for P (wi;wi), we consider the first case of Equa-
tion (31), i.e., νk→i = 0. The probability with which vertex
k vertex with weight ranging from wk to wk + dwk sends
the message 0 is dwk g(wk)P (0;wk). Therefore, P (wi;wi)

is

P (wi;wi) =

∫ +∞

0−
dwk g(wk)P (0;wk). (34)

The problem is then to solve the integral equations (Equa-
tions (32) to (34)) given a specific weight distribution g(w)
and under the normalization condition of f(νi→j ;wi), i.e.,∫ wi

0−
dνi→j f(νi→j ;wi)

= P (0;wi) +

∫ wi

0

dνi→j fm(νi→j ;wi) + P (wi;wi)

= 1.
(35)

Constant Positive Weights
We first consider constant positive weights, i.e., ∀i, j ∈ V :
wi = wj . Without loss of generality, we assume that all
weights equal 1. Then we have

g(w) = δ(w − 1). (36)

Plugging Equation (36) into Equations (32) to (34) leads to

fm(νi→j ;wi) = f(wi − νi→j ; 1) (37)

P (0;wi) = Θ(1− wi)
∫ 1

w−i

dνk→i f(νk→i; 1) (38)

P (wi;wi) = P (0; 1). (39)

Multiplying g(wi) dwi and integrating over (0,+∞) on
both sides of these equations, we have

fm(νi→j ; 1) = fm(1− νi→j ; 1) (40)
P (0; 1) = P (1; 1). (41)

Since all messages are initialized to 0, Equation (18) implies
that each message can only be 0 or 1. Therefore, the solution
to Equations (40) and (41) is

f(νi→j ; 1) =
1

2
[δ(νi→j − 1) + δ(νi→j − 0)] . (42)

This equation shows that each message has a probability of
1
2 to be equal to 0 and 1, respectively. Therefore, the total
weightwt of all incoming messages to a vertex has the prob-
ability

Pmt(wt) =

1
4 , wt = 0
1
2 , wt = 1
1
4 , wt = 2.

(43)

Combined with the fact that all vertices have constant weight
1, we have the expected total weight of the MWVC being
N/2, whereN is the number of vertices. This result matches
the expectation that a minimum ofN/2 vertices are required
to cover all edges in a loop.

Uniformly Distributed Weights
We now consider the case of uniformly distributed weights
over the interval [0, w0], i.e.,

g(w) =
1

w0
Θ(w)Θ(w0 − w), (44)

where w0 > 0 is a parameter of this distribution. Substitut-
ing Equation (44) into Equations (32) to (34) results in, for
0 < wi ≤ w0,

fm(νi→j ;wi) =
1

w0

∫ w0

wi−νi→j

dwk fm(wi − νi→j ;wk)

+
1

w0
P (wi;wi) for 0 < νi→j < wi

(45)

P (0;wi) =
1

w0

∫ w0

w−i

dwk

∫ wk

w−i

dνk→i f(νk→i;wk)

(46)

P (wi;wi) =
1

w0

∫ w0

0−
dwk P (0;wk), (47)

where we implicitly used P (wi;wi) = P (wi − νi→j ;wi −
νi→j) when deriving Equation (45), since according to
Equation (47), P (wi;wi) is a constant. To solve Equa-
tion (45), we start by recognizing that fm(νi→j ;wi) only
depends onwi−νi→j . Letting y = wi−νi→j , fm(νi→j ;wi)
is a function of y (denoted by h(y)). Equation (45) can be
written as

h(y) =
1

w0

∫ w0

y

dwk h(wk − y) +
1

w0
P (wi;wi)

=
1

w0

∫ w0−y

0

dz h(z) +
1

w0
P (wi;wi),

(48)

where a change of variable, z = wk − y, is made in the
last line. Taking the derivative with respect to y and noting
that P (wi;wi) is independent of y (from Equation (47)), we
obtain

h′(y) = − 1

w0
h(w0 − y), (49)

which is a linear idempotent differential equation (Falbo
2003). Its solution is

h(y) = h0

(
cos

(
y

w0
− 1

2

)
− sin

(
y

w0
− 1

2

))
, (50)

where h0 is a constant to be determined. By plugging the
definition of y into Equation (50), we have the solution to
Equation (45):

fm(νi→j ;wi) =h0

[
cos

(
wi − νi→j

w0
− 1

2

)
− sin

(
wi − νi→j

w0
− 1

2

)]
.

(51)

P (wi, wi) can be found by plugging the solution to h(y)
(from Equation (50)) into Equation (48):

P (wi;wi) = h0w0

(
cos

(
1

2

)
− sin

(
1

2

))
. (52)

We can now solve Equation (46). Substituting f(νk→i;wk)
using Equation (28), we expand Equation (46) as

P (0;wi) =
1

w0

∫ w0

wi

dwk

∫ wk

wi

dνk→i fm(νk→i;wk)

+
1

w0

∫ w0

wi

dwk P (wk;wk).

(53)

Plugging in Equations (51) and (52), the solution to Equa-
tion (53) is given by

P (0;wi) = h0w0

[
cos

(
1

2

)
+ sin

(
1

2

)

− sin

(
wi
w0
− 1

2

)
− cos

(
wi
w0
− 1

2

)]
.

(54)

In order to determine h0, we use the normalization prop-
erty of a probability distribution. Solving Equation (35) by
substituting Equations (51), (52) and (54) fixes h0 to

h0 =
1

w0

(
cos
(
1
2

)
+ sin

(
1
2

)) . (55)

Substituting Equation (55) into Equations (51), (52) and (54)
leads to

fm(vi→j ;wi) =
1

w0

(
cos

(
wi − νi→j

w0

)
−α sin

(
wi − νi→j

w0

)) (56)

P (0;wi) = 1− α cos

(
wi
w0

)
− sin

(
wi
w0

)
(57)

P (wi;wi) = α, (58)

where α =
1−tan(1

2)
1+tan(1

2)
≈ 0.293.

With f(νi→j ;wi) expressed in closed form, we can cal-
culate quantities such as the average weight contribution per
vertex w̄ to the total weight of an MWVC. In the case of a
finite graph, w̄ corresponds to the total weight of MWVC
divided by the number of vertices. For a loop of infinite size,
a given vertex of weight wi is included in an MWVC iff
wi < νj→i+νk→i (we ignore the case of wi = νj→i+νk→i
since it has zero probability to occur), where vertices k and
j are adjacent to vertex i vertex. Integrating over the weight
distributions for wj and wk, and over the probability density
for νj→i and νk→i, we obtain

w̄ =

∫ +∞

0−
dwj g(wj)

∫ +∞

0−
dwk g(wk)

×
∫ wj

0−
dνj→i f(νj→i;wj)

∫ wk

0−
dνk→i f(νk→i;wk)

×
∫ νj→i+νk→i

0−
dwi wig(wi),

(59)

For the uniform distribution of the weights (Equations (56)
to (58)), we have

w̄ =
1 + sin(1)− 2 cos(1)

2 + 2 sin(1)
w0 ≈ 0.2066w0. (60)

Numerical Experiments
In this section, we verify our analysis of the MSMP algo-
rithm for the MWVC problem on a loop. Since the MSMP

Algorithm 1: LoopMWVC finds the total weight of an
MWVC of a loop.

1 Function LoopMWVC(W)
Input: W : An array of weights of vertices in a loop.
Output: The total weight of an MWVC of the loop.

2 N := |W |;
3 if N ∈ {0, 1} then return 0;
4 if N = 2 then return min{W [0],W [1]};
5 if N = 3 then return

∑
w∈W w −maxw∈W w;

6 w1 := W [N − 1] + PathMWVC(W [0 : N − 2]);
7 w2 := W [0] +W [N − 2] + PathMWVC(W [1 :

N − 3]);
8 return min{w1, w2};
9 Function PathMWVC(W)

Input: W : An array of weights of vertices in a path.
Output: The total weight of an MWVC of the path.

10 N := |W |;
11 opt := an empty array of length N + 1;
12 opt[0] := 0, opt[1] := 0;
13 for i← 2 to N do
14 opt[i] :=

min{W [i−1]+opt[i−1],W [i−2]+opt[i−2]};
15 return opt[N];

algorithm is known to produce optimal solutions for trees,
our study of its behavior on loops is a fundamental step to-
wards understanding the general case. We conducted the fol-
lowing experiment to verify our analysis on loops with uni-
formly distributed weights. The parameters used were the
maximum weight w0 and the loop length N . Without loss of
generality, we fixed the value of w0 to 1, so that according to
Equation (60), the expected average weight contribution per
vertex is w̄ ≈ 0.2066 asymptotically. We variedN exponen-
tially from 20 to 105 to generate 16 values of N within this
range. For each value of N , we generated 50 loops of size
N with uniformly distributed weights. For each loop, we
computed the total weight of an MWVC using the MSMP
algorithm and divided it by N to obtain w̄. We also com-
puted w̄ of these loops using a simple linear-time dynamic
programming-based approach (Algorithm 1).

Figure 2 shows the results of the numerical experiments.
As the size of the loop increases, the actual average sizes of
the MWVCs become closer to those predicted by the analyt-
ical results. This observation seems to demonstrate that our
analytical framework works well, at least on loops. In our
experiments (as well as in the analytical solution in section
“Constant Positive Weights”), we also observed that, upon
convergence, the MSMP algorithm always produces optimal
solutions asymptotically. This seems to support the conjec-
ture that, the MSMP algorithm for the MWVC problem on
general loopy graphs may be effective, as long as it con-
verges. Indeed, it has been shown that it is beneficial to first
convert a WCSP instance to an MWVC problem instance
using the concept of the constraint composite graph (Xu,
Kumar, and Koenig 2017). In particular, the effectiveness
of the MSMP algorithm can be significantly improved on

102 103 104 105

N

0.16

0.18

0.20

0.22

0.24

0.26

w̄

MSMP Analytical Prediction

MSMP Experiment

Dynamic Programming

Figure 2: Shows the average weight contribution per vertex
w̄ of an MWVC for loops of different sizes and with weights
uniformly distributed over the interval [0, 1]. The black solid
line indicates the asymptotic value of w̄ as N tends to infin-
ity, predicted by the analytical study (Equation (60)). The
blue triangles represent the values of w̄ estimated by the
MSMP algorithm, and the blue solid vertical bars indicate
the standard deviation over 50 problem instances of the same
size. The red circles indicate the true values of w̄ computed
by dynamic programming (Algorithm 1), and the red dashed
vertical bars show the standard deviation over 50 problem
instances of the same size. For visual clarity, the horizontal
positions of the blue triangles are slightly shifted to the right
of the corresponding red circles in the plot.

the MWVC problem reformulation of the WCSP; and (Xu,
Kumar, and Koenig 2017) demonstrates this effectiveness
empirically. In this paper, we support the same general strat-
egy of first reformulating a given combinatorial optimization
problem as the MWVC problem; but we do this by creating
a strong analytical framework for understanding the MSMP
algorithm.

Conclusions and Future Work
In this paper, we developed the MSMP algorithm for the
MWVC problem and studied its effectiveness. We showed
that this algorithm generalizes the WP algorithm known for
the MVC problem. While the MSMP algorithm is analyt-
ically well studied on trees, we took the first fundamental
step to build a systematic analytical framework towards un-
derstanding its behavior on general graphs. We analytically
derived the total weight of an MWVC of infinite loops with
constant and uniformly distributed weights on vertices. We
showed that in both cases, our analytical results matched
those of theoretical expectations and experiments, respec-
tively. Our contributions support the general strategy of us-
ing the MSMP algorithm on the MWVC problem reformula-
tion of a given combinatorial optimization problem (instead
of directly on it). In particular, we created a strong analytical
framework for understanding the MSMP algorithm on the
MWVC problem and consequently on all combinatorial op-
timization problems that can be reformulated as the MWVC
problem.

Acknowledgment
The research at the University of Southern California was
supported by the National Science Foundation (NSF) under
grant numbers 1724392, 1409987, and 1319966. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the of-
ficial policies, either expressed or implied, of the sponsoring
organizations, agencies or the U.S. government.

References
Bistarelli, S.; Montanari, U.; Rossi, F.; Schiex, T.; Verfaillie,
G.; and Fargier, H. 1999. Semiring-based CSPs and valued
CSPs: Frameworks, properties, and comparison. Constraints
4(3):199–240.
Cai, S.; Su, K.; Luo, C.; and Sattar, A. 2013. NuMVC: An
efficient local search algorithm for minimum vertex cover.
Journal of Artificial Intelligence Research 46(1):687–716.
Chen, J.; Kanj, I. A.; and Xia, G. 2006. Improved param-
eterized upper bounds for vertex cover. In the International
Symposium on Mathematical Foundations of Computer Sci-
ence, 238–249.
Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein, C.
2009. Introduction to Algorithms (3rd Edition). MIT Press.
Erdős, P., and Rényi, A. 1959. On random graphs I. Publi-
cationes Mathematicae 6:290–297.
Falbo, C. E. 2003. Idempotent differential equations. Jour-
nal of Interdisciplinary Mathematics 6(3):279–289.
Johnson, D. J., and Trick, M. A., eds. 1996. Cliques, Col-
oring, and Satisfiability: Second DIMACS Implementation
Challenge. American Mathematical Society.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. MIT Press.
Kumar, T. K. S. 2008a. A framework for hybrid tractabil-
ity results in Boolean weighted constraint satisfaction prob-
lems. In the International Conference on Principles and
Practice of Constraint Programming, 282–297.
Kumar, T. K. S. 2008b. Lifting techniques for weighted
constraint satisfaction problems. In the International Sym-
posium on Artificial Intelligence and Mathematics.
Kumar, T. K. S. 2016. Kernelization, generation of bounds,
and the scope of incremental computation for weighted con-
straint satisfaction problems. In the International Sympo-
sium on Artificial Intelligence and Mathematics.
Mézard, M., and Montanari, A. 2009. Information, Physics,
and Computation. Oxford University Press.
Mézard, M., and Zecchina, R. 2002. Random k-satisfiability
problem: From an analytic solution to an efficient algorithm.
Physical Review E 66(5):056126.
Niskanen, S., and Östergård, P. R. J. 2003. Cliquer user’s
guide, version 1.0. Technical Report T48, Communications
Laboratory, Helsinki University of Technology, Espoo, Fin-
land.
Richter, S.; Helmert, M.; and Gretton, C. 2007. A stochas-
tic local search approach to vertex cover. In Proceedings

of the Annual German Conference on Artificial Intelligence
(Künstliche Intelligenz), 412–426.
Sandholm, T. 2002. Algorithm for optimal winner deter-
mination in combinatorial auctions. Artificial Intelligence
135(1):1–54.
Weigt, M., and Zhou, H. 2006. Message passing for vertex
covers. Physical Review E 74(4):046110.
Xu, H.; Kumar, T. K. S.; and Koenig, S. 2016. A new solver
for the minimum weighted vertex cover problem. In the
International Conference on Integration of Artificial Intel-
ligence and Operations Research Techniques in Constraint
Programming, 392–405.
Xu, H.; Kumar, T. K. S.; and Koenig, S. 2017. The
Nemhauser-Trotter reduction and lifted message passing for
the weighted CSP. In the International Conference on In-
tegration of Artificial Intelligence and Operations Research
Techniques in Constraint Programming, 387–402.
Yedidia, J. S.; Freeman, W. T.; and Weiss, Y. 2003. Under-
standing belief propagation and its generalizations. Explor-
ing Artificial Intelligence in the New Millennium 8:239–269.

