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A framework for 

coordinating task- 

and motion-level 

operations for 

many robots uses 

informed search to 

find causally feasible 

solutions and simple 

temporal networks 

to include kinematic 

constraints and react 

to dynamic changes.

The problem of coordinating task- and motion-level operations for mul-

tirobot systems arises in many real-world scenarios. A simple example 

is an automated warehouse system in which heavy robots move inventory pods 

in a space inhabited by humans. The robots may have to avoid close proximity

to humans and each other, or they may have 
to compete for resources with each other, 
yet they have to work toward a common  
objective.1 Another example is airport  
surface operations in which towing vehicles 
autonomously navigate to aircraft and tow 
them to their destinations.2 This task-level 
coordination has to be done in conjunction 
with the motion-level coordination of action 
primitives so that each robot has a kinemat-
ically feasible plan.

The coordination of task- and motion-
level operations for multirobot systems 
requires a large search space. Current tech-
nologies are inadequate for addressing the 
complexity of the problem, which becomes 
even worse since we have to take imper-
fections in plan execution into account. 

For example, exogenous events might not 
be included in the domain model. Even if 
they are, they can often be modeled only 
probabilistically.3

In this article, we present an overview of 
our hierarchical framework for the long-
term autonomy of multirobot systems. Our 
framework combines techniques from auto-
mated artificial intelligence (AI) planning, 
temporal reasoning, and robotics. Figure 1 
shows its architecture for a small example.

The plan-generation phase uses a state-
of-the-art AI planner4,5 for causal reasoning 
about the task-level actions of the robots, in-
dependent of their kinematic constraints to 
achieve scalability. It then identifies the de-
pendencies between the preconditions and 
effects of the actions in the generated plan 
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and compiles them into a temporal 
plan graph (TPG) that encodes their 
partial temporal order. Finally, it an-
notates the TPG with quantitative 
information that captures some kine-
matic constraints associated with ex-
ecuting the actions. This converts the 
TPG into a simple temporal network 
(STN) from which a plan (including 
its execution schedule) can be gener-
ated in polynomial time that takes 
some of the kinematic constraints of 
the robots into account (for simplicity 
called a kinematically feasible plan 
here), namely, by exploiting the slack 
in the STN. The term “slack” refers 
to the existence of an entire class of 
plans consistent with the STN, al-
lowing us to narrow down the class 
of plans to a single kinematically fea-
sible plan. A similar notion of slack 
is well studied for STNs in general in 
the temporal-reasoning community.

The plan-execution phase also ex-
ploits the slack in the STN, namely 

for absorbing any imperfect plan ex-
ecution to avoid time-consuming  
re-planning in many cases.

We use a multi-robot path-planning 
problem as a case study to present the 
key ideas behind our framework and 
demonstrate it both in simulation and 
on real robots.

Plan Generation
We use a state-of-the-art AI planner 
for reasoning about the causal inter-
actions among actions. In the multi-
agent pathfinding (MAPF) problem, 
which is well studied in AI, robotics 
and theoretical computer science, the 
causal interactions are studied oblivi-
ous to the kinematic constraints of 
the robots. We’re given a graph with 
vertices (that correspond to locations) 
and unit-length edges between them. 
Each edge connects two different ver-
tices and corresponds to a narrow 
passageway between the correspond-
ing locations in which robots cannot 

pass each other. Given a set of robots 
with assigned start vertices and tar-
gets (goal vertices), we have to find 
collision-free paths for the robots 
from their start vertices to their tar-
gets (where the robots remain) that 
minimize the makespan (or some 
other measure of the cost, such as the 
flowtime). At each timestep, a robot 
can either wait at its current vertex 
or traverse a single edge. Two robots 
collide when they’re at the same ver-
tex at the same timestep or traverse 
the same edge at the same timestep in 
opposite directions.

The MAPF problem is NP-hard 
to solve optimally or bounded sub-
optimally since it’s NP-hard to ap-
proximate within any constant factor 
less than 4/3, called the suboptimal-
ity guarantee.6 Yet, powerful MAPF 
planners have recently been developed 
in the AI community that can find  
(optimal or bounded suboptimal) 
collision-free plans for hundreds of 
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Figure 1. Architecture of our hierarchical framework. First, we discretize the continuous multiagent pathfinding (MAPF) 
problem in time and space and use an AI planner to solve the resulting NP-hard problem. Then, we solve the simple temporal 
network (STN) for the resulting discrete MAPF plan in polynomial time to generate a kinematically feasible plan that provides 
guaranteed safety distances among robots under the assumption of perfect plan execution. Control uses specialized robot 
controllers during plan execution to exploit the slack in the plan to try to absorb any imperfect plan execution. If this doesn’t 
work, partial dynamic re-planning re-solves a suitably modified STN in polynomial time. Only if this doesn’t work either, partial 
dynamic re-planning re-solves a suitably modified MAPF problem more slowly.
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robots at the cost of ignoring the ki-
nematic constraints of real robots.3–5,7 
We report on two of our own contri-
butions to such MAPF planners below.

Consistency and Predictability 
of Motion
For many real-world multirobot sys-
tems, the consistency and predict-
ability of robot motions is important 

(especially in work spaces shared 
by humans and robots), which isn’t 
taken into account by existing MAPF 
planners. We’ve shown that we 
can adapt AI planners, such as the 
bounded suboptimal MAPF plan-
ner Enhanced Conflict-Based Search 
(ECBS),8 to generate paths that in-
clude edges from a user-provided set 
of edges (called highways) whenever 
the suboptimality guarantee allows 
it, which makes the robot motions 
more consistent and thus predictable. 
The highways can be an arbitrary set 
of edges and thus be chosen to suit 
humans. For example, highways need 
to be created only in the part of the 
environment where the consistency of 
robot motions is important. Further-
more, highways provide suggestions, 
not restrictions. Poorly chosen high-
ways don’t make a MAPF instance 
unsolvable, although they can make 
the MAPF planner less efficient. On 
the other hand, well-chosen highways 
typically speed up the MAPF planner 
because they avoid front-to-front col-
lisions between robots that travel in 
opposite directions.

Our version of the ECBS planner 
with highways either inflates the heu-
ristic values or the edge costs non-
uniformly in a way that encourages 
path finding to return paths that in-
clude the edges of the highways.9 For  

example, we can place highways in an 
automated warehouse system along 
the narrow passageways between the 
storage locations as shown by the red 
arrows in Figure 2. We’ve also devel-
oped an approach for learning good 
highways automatically4 that’s based 
on the insight that solving the MAPF 
problem optimally is NP-hard but 
computing the minimum-cost paths 
for all robots independently is fast, 
by employing a graphical model that 
uses the information in these paths 
heuristically to generate good high-
ways automatically.

Target Assignment  
and Path Finding
For the MAPF problem, the assign-
ments of robots to targets are pre-
determined, and robots are thus not 
exchangeable. In practice, however, 
the assignments of robots to targets 
are often not predetermined. For  
example, consider two robots in an 
automated warehouse system that 
have to deliver two inventory pods to 
the same packing station. It doesn’t 
matter which robot arrives first at 
the packing station, and their places 
in the arrival queue of the packing 
station are thus not predetermined. 
We therefore define the combined 
target assignment and path-finding 
(TAPF) problem for teams of robots 
as a combination of the target-as-
signment and path-finding problems. 
The TAPF problem is a generalization 
of the MAPF problem where the ro-
bots are partitioned into equivalence 
classes (called teams). Each team is 
given the same number of unique tar-
gets as there are robots in the team. 
We have to assign the robots to the 
targets and find collision-free paths 
for the robots from their start ver-
tices to their targets in a way such 
that each robot moves to exactly 
one target given to its team, all tar-
gets are visited, and the makespan is 
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Figure 2. Environment of a simulated automated warehouse system where robots 
need to swap sides from Area1 to Area2 and vice versa. The red arrows show user-
suggested edges to traverse (called highways). Highways make the resulting plan 
more predictable and speed up planning.

A

(a)

(b)

B

E F G H I

C D

Figure 3. Target assignment and path-
finding. (a) TAPF instance with two 
teams: Team 1 (in pink) and Team 2 (in 
green). The circles on the left are robots. 
The circles in light colors on the right 
are targets given to the team of the 
same color. (b) Graph representation of 
the TAPF instance. Team 1 consists of 
a single robot with start vertex A and 
target H. Team 2 consists of two robots 
with start vertices E and F, respectively, 
and targets D and I.
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minimized. Any robot in a team can 
be assigned to any target of the team, 
and robots in the same team are thus 
exchangeable. However, robots in 
different teams aren’t exchangeable. 
Figure 3 shows a TAPF instance with 
two teams of robots.

The TAPF problem is NP-hard to 
solve optimally or bounded subop-
timally for more than one team.6 
TAPF planners have two advantages 
over MAPF planners: optimal TAPF 
plans often have smaller makespans 
than optimal MAPF plans for TAPF 
instances since optimal TAPF plans 
optimize the assignments of robots 
to targets, and state-of-the-art TAPF 
planners compute collision-free paths 
for all robots on a team very fast and 
thus often scale to a larger number of 
robots than state-of-the-art MAPF 
planners. We developed the optimal 
TAPF planner Conflict-Based Min-
Cost Flow (CBM),5 which combines 
heuristic search-based MAPF plan-
ners10 and flow-based MAPF plan-
ners11 and scales to TAPF instances 
with dozens of teams and hundreds 
of robots.

Generation of Kinematically 
Feasible Plans
MAPF/TAPF planners generate plans 
using idealized models that don’t 
take the kinematic constraints of 
actual robots into account. For ex-
ample, they gain efficiency by not 
taking velocity constraints into ac-
count and instead assuming that all 
robots always move with the same 
nominal speed in perfect synchroni-
zation with each other. However, it’s 
communication-intensive for robots 
to remain perfectly synchronized 
as they follow their paths, and their 
individual progress will thus typi-
cally deviate from the plan. Two ro-
bots can collide, for example, if one 
robot already moves at large speed 
while another robot accelerates from 

standstill. Slowing down all robots 
results in large makespans and is thus 
undesirable.

We thus developed MAPF-POST, 
a novel approach that makes use  
of an STN12 to postprocess a MAPF/
TAPF plan in polynomial time 
and create a kinematically feasible 
plan.13,14 MAPF-POST utilizes in-
formation about the edge lengths and 
maximum translational and rota-
tional velocities of the robots to trans-
late the plan into a temporal plan 
graph (TPG) and augment the TPG 
with additional nodes that guarantee 
safety distances among the robots. 
Figure 4 shows an example. Then, it 
translates the augmented TPG into an 
STN by associating bounds with arcs 
in the augmented TPG that express 
non-uniform edge lengths or velocity 
limits (due to kinematic constraints 
of the robots or safety concerns). 
It then obtains an execution sched-
ule from the STN by minimizing the 

makespan or maximizing the safety 
distance via graph-based optimiza-
tion or linear programming. The ex-
ecution schedule specifies when each 
robot should arrive in each location 
of the plan (called arrival times). The 
kinematically feasible plan is a list  
of locations (that specify way-points 
for the robots) with their associated 
arrival times.14

Plan Execution
The robots will likely not be able to 
follow the execution schedule per-
fectly, resulting in plan deviations. 
For example, our planner takes ve-
locity constraints into account but 
doesn’t capture higher-order kine-
matic constraints, such as accelera-
tion limits. Also, robots might be 
forced to slow down due to unfore-
seen exogenous events, such as floors 
becoming slippery due to water spills. 
In such cases, the plan has to be ad-
justed quickly during plan execution.
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Figure 4. (a) TAPF plan produced by the optimal TAPF planner CBM for the TAPF 
instance in Figure 3. (b) Temporal plan graph (TPG) for the TAPF plan. Each node  
in the TPG represents the event “robot j arrives at vertex l” at timestep i. The arcs 
indicate temporal precedences between events. (c) Augmented TPG.
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Frequent re-planning could address 
these plan deviations, but it’s time-
consuming (and thus impractical) due 
to the NP-hardness of the MAPF/
TAPF problem. Instead, control uses 
specialized robot controllers to ex-
ploit the slack in the plan to try to ab-
sorb any imperfect plan execution. If 
this doesn’t work, partial dynamic re-
planning re-solves a suitably modified 
STN in polynomial time. Only if this 
doesn’t work either, partial dynamic 
re-planning re-solves a suitably modi-
fied MAPF problem more slowly.

Control
A robot controller takes the current 
state and goal as input and computes 
the motor output. For example, the 
state of a differential drive robot can 
be its position and heading, and the 
motor output is the velocities of the 
two wheels. The goal is the execution 
schedule, assuming a constant move-
ment velocity between two consecu-
tive way-points (called the constant 
velocity assumption). Robots can’t 
execute such motion directly because 
they can’t change their velocities in-
stantaneously and might not be able 
to move sideways. The actual safety 
distance during plan execution is thus 
often smaller than the one predicted 

during planning, which is why we 
recommend to maximize the safety 
distance during planning rather than 
the makespan. We use robot control-
lers that try to minimize the effect  
of the above limitations. For differ-
ential drive robots, we use the fact  
that turning in place is often much 
faster than moving forward. Further-
more, we adjust the robot velocities 
dynamically based on the time-to-go 
to reach the next way-point. It’s espe-
cially important to monitor progress 
toward locations that correspond to 
nodes whose slacks are small. Robots 
could be alerted of the importance of 
reaching these bottleneck locations in 
a timely manner. Similar control tech-
niques can be used for other robots  
as well, such as drones, as long as no 
aggressive maneuvers are required.

Partial Dynamic Re-planning
If control is insufficient to achieve the 
arrival times given in the execution 
schedule, we adjust the arrival times 
by resolving a suitably modified STN, 
resulting in a new execution schedule. 
Only if this doesn’t work either, we 
re-solve a suitably modified MAPF 
problem, resulting in a new kinemat-
ically feasible plan. If probabilistic 
models of delays and other deviations 

from the nominal velocities are avail-
able, they could be used to determine 
the probabilities that each location 
will be reached in a certain time in-
terval and trigger re-planning only if 
one or more of these probabilities be-
come small13.

Experiments
We implemented our approach in 
C11 using the boost library for ad-
vanced data structures, such as 
graphs. Experiments can be executed 
on three abstraction levels, namely, 
agent simulation, robot simulation, 
and real robots:

•	 The agent simulation uses the con-
stant velocity assumption and is 
fast. It can be used to verify the 
code and create useful statistics for 
the runtime, minimum distance 
between any two robots, and av-
erage time until any robot reaches 
its target, among others. It can also 
be used for scalability experiments 
with hundreds of robots in clut-
tered environments.

•	 The robot simulation adds real-
ism because it uses a physics engine 
(instead of the constant velocity 
assumption) and realistic robot 
controllers for the simulated robots 
to follow the execution schedule. 
We use V-REP as robot simulation 
for differential drive robots, robots 
with omnidirectional wheels, flying 
robots, and spiderlike robots.

•	 Real robots are the ultimate test-
bed. We use a team of eight iRobot 
Create2 differential drive robots.14

In the following, we discuss two 
example use cases on a 2.1 GHz In-
tel Core i7-4600U laptop computer 
with 12 Gbytes RAM. Each example 
is solved within 10 seconds of com-
putation time and also shown in our 
supplemental video at http://idm-lab 
.org/project-p.html.

Figure 5. Simulated automated warehouse environment. The in-set in the top-left 
corner shows an overhead view. The robots are at different pickup locations and 
need to deliver the color-coded boxes to the left and right side, respectively.
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Automated Warehouse
In the automated warehouse use case, 
we model two robot teams. The first 
team consists of 10 KUKA youBot 
robots, which are robots with omni-
directional wheels capable of carry-
ing (only) small boxes. The second 
team consists of two Pioneer P3DX 
robots, which are differential-drive 
robots capable of carrying (only) 
large boxes. The robots have to 
pick up small and large color-coded 
boxes and bring them to a target of 
the same color. We split the task into  
two parts.

First, each robot has to move to an 
appropriately sized box and pick it 
up. Second, it has to move to a target 
of the same color. The first part is a 
TAPF instance with two teams, one 
for each robot type. The second part 
is a TAPF instance with four teams, 
one for each color.

We use the robot simulation on a 
2D grid. Figure 5 shows a screenshot 
after the first part has already been 
executed and the robots are at differ-
ent pickup locations. The KUKA ro-
bots use their grippers to pick small 
boxes from shelves while the Pio-
neer robots receive the large boxes 
from a conveyor belt. The robots then 
need to move to the targets on the 
left and right side of the warehouse, 
respectively.

Formation Changes
Formations are useful for convoys, 
surveillance operations, and artistic 
shows. The task of switching from 
one formation to another, perhaps in 
a cluttered environment, is a TAPF 
problem. In the formation-change use 
case, we model a team of 32 identi-
cal quadcopters that start in a build-
ing with five open doors. The robots 
have to spell the letters U – S – C out-
side the building, which is a special  
TAPF instance where all robots 
are exchangeable (also called an 

anonymous MAPF instance11). We 
use the robot simulation on a 3D 
grid. Figure 6 shows a screen-shot of 
the goal formation.

In the future, we plan to apply our 
framework to more realistic appli-

cations such as planning for real au-
tomated warehouses, where orders 
need to be fulfilled continuously. For 
more information on our research, see 
http://idm-lab.org/project-p.html. 
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