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Abstract—Filtering denotes any method whereby an agent
updates its belief state—its knowledge of the state of the world—
from a sequence of actions and observations. Popular filtering
techniques like Kalman and particle filters maintain compact
representations of the belief state at all times. However, these
techniques cannot be applied to situations where the world is
described using constraints instead of stochastic models. In such
cases, the belief state is a logical formula describing all possible
world states. In this paper, we first review a logical filtering
algorithm for connected row convex (CRC) constraints. CRC
constraints are representationally very powerful; and the filtering
algorithm for CRC constraints is a logical equivalent of the
Kalman filter. We later study the CRC filtering algorithm in
distributed settings where nodes of a network are interested in
different subsets of variables from a larger system. We deduce its
reducibility to the problem of distributed path consistency (PC)
and prove the compactness of the belief state representations
maintained at each node at all times.

I. INTRODUCTION

When an agent operates in a partially observable or un-
certain environment, it must maintain a representation of its
knowledge about the world (belief state). Filtering denotes
any method whereby an agent updates its belief state from
a sequence of actions and observations. For stochastic models
with Gaussian noise in linear transitions and observations, the
Kalman filter [1] maintains a multivariate Gaussian belief state
over N system variables. In each timestep of the Kalman filter,
the time complexity for updating the belief state is O(N3), and
the space complexity for maintaining the belief state is O(N2).
These complexities are polynomial in N and independent of
the timestep. Therefore, a Kalman filter can run indefinitely.

The Kalman filter has also been decentralized to be made
applicable to many large-scale dynamical systems [2]. For
example, the distributed Kalman filter has been used with
Wireless Sensor Networks (WSNs) to monitor power grid
systems, and in weather forecast, earthquake, and target track-
ing systems [3]. Here, geographically distributed sensors take
measurements of system variables; but each sensor is typically
able to observe the values of only a subset of the variables.

State estimation in this distributed setting not only requires
local information processing capabilities at each individual
sensor but also requires inter-sensor communication capabil-
ities. This networking aspect of the problem—that is absent
from centralized state estimation—raises the need for an inte-
grated design of local processing and network communication

operations to optimize metrics related to energy consumption,
bandwidth requirements, and system efficiency [4]. To address
the challenge of limited communication, an innovation factor
is used to characterize the importance of communicating a
certain observation over a network [5]. The innovation of an
observation simply measures the information content in it.

Despite the wide use of the centralized/distributed Kalman
filter, it is not applicable to domains that are described using
logical formulas or constraints instead of stochastic models.
The reason is that the assumptions of the Kalman filter, as well
as other popular filters such as the particle filter, are not met
by such domains. In logical domains, the belief state should
describe all possible world states. The problem of how to
represent such belief states compactly using logical formulas
is commonplace in automated planning, game playing [6], etc.

In logical domains, efficient logical filtering refers to main-
taining a compact representation of the belief state with a
(potentially unbounded) sequence of actions and observations.
In a general version of the logical filtering problem, the initial
state may be only partially known, the transition model that
allows for actions by the agent may be nondeterministic, and
the observation model may be partial or nondeterministic.

With increasing timesteps, logical filtering faces the chal-
lenge of having to maintain a compact representation of a
growing number of world states. Although efficient filtering
is possible for very restrictive classes [7]–[9], it is hard in
general for nondeterministic domains even in propositional
logic. In general, for a logical filtering algorithm, it is unviable
to update each world state separately [10], expensive to
record the sequence of actions and observations [11], and
incomplete/unsound to approximate the belief state [12].

A logical equivalent of the centralized Kalman filter with
analogous time and space complexities is provided in [13].
Here, connected row convex (CRC) constraints play the role
of Gaussians; and the belief state is updated using path
consistency (PC). CRC constraints are representationally pow-
erful and occur commonly in many real-world domains [14],
[15]. In this paper, we extend this CRC filter to distributed
settings where nodes of a network are interested in different
subsets of variables from a larger system. We deduce the
reducibility of this problem to the problem of distributed PC
and, more importantly, prove the compactness of the belief
state representations maintained at each node at all times.
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Fig. 1: Illustrates the (0,1)-matrix representation of constraints
as well as the properties of CRC constraints. The constraint on
the left qualifies as a CRC constraint. The 4th column in it has
only ‘0’s. After its removal, the ‘1’s appear consecutively, as a
single band, in each row and column. Moreover, in consecutive
rows and columns, these bands of ‘1’s touch each other. The
constraint on the right does not qualify as a CRC constraint.
Here, although the ‘1’s appear consecutively in each row and
column, the bands in consecutive rows and columns don’t
touch each other. In particular, the band of ‘1’s in the second
row/column does not touch the band in the third row/column.

II. PRELIMINARIES AND BACKGROUND

A constraint satisfaction problem (CSP) is defined by a
triplet 〈X ,D, C〉, where X = {X1, X2 . . . XN} is a set of
variables and C = {C1, C2 . . . CM} is a set of constraints.
Each variable Xi is associated with a discrete-valued domain
Di ∈ D, and each constraint Ci is a pair 〈Si, Ri〉, where
Si ⊆ X is a subset of variables (called the scope of Ci) and
Ri ⊆ DSi (DSi = ×Xj∈SiDj) denotes all compatible tuples
of DSi

allowed by the constraint. |Ri| is called the arity of
the constraint Ci. A solution to a CSP is an assignment of
values to all variables from their respective domains such that
all constraints are satisfied. In a binary CSP, the arity of any
constraint is 2. Binary CSPs are representationally as powerful
as CSPs and are NP-hard to solve in general.

A network of binary constraints is said to be path consistent
iff, for any three distinct variables Xi, Xj and Xk, and for each
pair of consistent values of Xi and Xj that satisfies the direct
constraint C(Xi, Xj), there exists a value of Xk such that
the constraints C(Xi, Xk) and C(Xj , Xk) are also satisfied.
Conceptually, algorithms that enforce PC work by iteratively
“tightening” the binary constraints of a CSP [16]. When binary
constraints are represented as matrices, PC algorithms employ
the three basic operations of composition, intersection and
transposition. The (0,1)-matrix representation of a constraint
C(Xi, Xj) between the variables Xi and Xj consists of |Di|
rows and |Dj | columns when orderings on the domain values
of Xi and Xj are imposed. The ‘1’s and ‘0’s in the matrix
respectively indicate the allowed and disallowed tuples. Fig-
ure 1 presents examples of such (0,1)-matrix representations
of binary constraints.

A binary constraint represented as a (0,1)-matrix is row
convex iff, in each row, all the ‘1’s are consecutive. It has been
shown in [17] that if there exists an ordering of the variables
and a domain ordering for each variable in a path consis-
tent network of binary constraints such that each constraint
C(Xi, Xj), with Xi appearing after Xj in the ordering, can be

made row convex, then the network is also globally consistent
along this ordering of the variables. That is, a solution can be
found using a backtrack-free search that instantiates variables
in that ordering. The orderings on the domain values of all
variables are critical to establishing row convexity in path
consistent networks, for which the result of [18] can be used.

Although row convexity implies global consistency in path
consistent networks, the very process of achieving PC may
destroy the property of row convexity. This means that row
convexity alone does not necessarily imply global consis-
tency. CRC constraints avoid this problem by imposing a
few additional restrictions. A (0,1)-matrix is CRC if, after
removing rows or columns with only ‘0’s in them, it is row
convex and connected, that is, the positions of the ‘1’s in any
two consecutive rows/columns intersect, or are consecutive.
Unlike row convex constraints, CRC constraints are closed
under composition, intersection and transposition—the three
basic operations employed by algorithms that enforce PC—
hence establishing that enforcing PC over CRC constraints is
sufficient to ensure global consistency [19]. Figure 1 shows
examples to illustrate the properties of CRC constraints.

III. THE CENTRALIZED CRC FILTER

In this section, we review the logical filtering algorithm for
CRC constraints that is based on PC and presented in [13].
Here, the belief state can be maintained indefinitely (at all
times) using a compact representation. In fact, the space
complexity of this representation is O(N2D2), where N is the
number of system variables and D is the largest domain size
of any of these variables. This space complexity matches the
quadratic space complexity of the Kalman filter. Moreover, the
time complexity of updating the belief state at each timestep
is O(N3D2). This is, in fact, the time complexity of the
PC algorithm applied to CRC constraints. While PC takes
O(N3D3) time in general [16], the special structure of the
CRC constraints has been exploited in [20] to reduce this time
complexity to O(N3D2). The cubic time complexity in terms
of N also matches that of the Kalman filter. The CRC filter
is therefore the logical equivalent of the Kalman filter with
the CRC constraints playing the role of Gaussians in Kalman
filtering.

Figure 2 shows a dynamically evolving system. The system
state at time t is defined by an assignment of values to all N
variables in {Xt

1, X
t
2 . . . X

t
N}. Without loss of generality, we

assume that the system is Markovian—i.e., its state at time
t+ 1 is independent of its states before time t given its state
at time t. The initial state can be a unique state specified as
an assignment of values to all variables in {X0

1 , X
0
2 . . . X

0
N};

or uncertainty in the initial state is allowed as far as the
possible initial states are the set of all solutions to CRC
constraints specified on the variables in {X0

1 , X
0
2 . . . X

0
N}. The

possible transitions of the system from time t to time t + 1
are also defined similarly—i.e., as the set of solutions to CRC
constraints specified on the variables in {Xt

1, X
t
2 . . . X

t
N} ∪

{Xt+1
1 , Xt+1

2 . . . Xt+1
N }. Finally, the observations made at

time t can either be indicated using unique values to a subset
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Fig. 2: Shows a dynamically evolving system. The system
state at time t is defined by an assignment of values to
the N variables {Xt

1, X
t
2 . . . X

t
N}. The possible initial states

are the set of all solutions to the constraints specified on
{X0

1 , X
0
2 . . . X

0
N}. The possible transitions from time t to time

t + 1 are the set of solutions to the constraints specified on
{Xt

1, X
t
2 . . . X

t
N}∪{X

t+1
1 , Xt+1

2 . . . Xt+1
N }. The observations

made at time t can be specified as unique values to the
variables in {Xt

1, X
t
2 . . . X

t
N} or more generally as constraints

on {Xt
1, X

t
2 . . . X

t
N}.
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Fig. 3: Illustrates a CSP search tree. At level 1 of the
search tree, X1 is assigned the value d11. At level 2, X2

is assigned the value d22 known to be consistent with X1’s
value. Similarly, X3 is then assigned the value d31 and X4

is assigned the value d43 known to be consistent with all
previous commitments. The figure shows a snapshot of this
search process when we are currently searching for a domain
value to assign to X5 that should be consistent with the values
of all variables instantiated higher up in the search tree.

of the variables in {Xt
1, X

t
2 . . . X

t
N} or be specified more

generally as CRC constraints on {Xt
1, X

t
2 . . . X

t
N}.

Figures 3 and 4 illustrate the basic arguments in proving
that path consistent row convex constraints are also globally
consistent—i.e., any partial assignment to a subset of the
variables that satisfies all the direct constraints between them
can also be extended to a consistent assignment to any
other variable. Since CRC constraints are row convex after
establishing arc consistency (AC) and are closed under the
operations of PC, they can be solved using backtrack-free
search if enforcing strong PC (PC and AC) does not lead
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Fig. 4: Illustrates the argument of backtrack-free search for
path consistent CRC constraints using the example from
Figure 3. The ordered domain values of X5 are, say,
d51, d52 . . . d55. Each of the previously instantiated variables,
X1 = d11, X2 = d22, X3 = d31, X4 = d43, is consistent
with a continuous range of X5’s domain values that can be
visualized as a horizontal line segment. A required domain
value of X5 corresponds to a vertical line that goes through
all these horizontal line segments that represent bands of ‘1’s.
If such a vertical line does not exist, then simple geometry
indicates that some two of the horizontal line segments do not
overlap with each other. This means that some two previous
commitments, X2 = d22 and X4 = d43 in this case, annihilate
all domain values of X5. But this would contradict the
assumption of PC, because PC would have marked X2 = d22
and X4 = d43 as being incompatible.

to the annihilation of any variable’s domain.

Figure 5 shows how the above properties of CRC constraints
can be exploited in logical filtering. In the CRC filter, the
belief state at time t is represented using a set of CRC
constraints on {Xt

1, X
t
2 . . . X

t
N}. Since a CRC constraint is

binary, the space complexity is O(N2D2). Maintaining the
belief state using a set of CRC constraints is beneficial since
we can represent an exponentially large number of possible
world states as solutions to these CRC constraints. Filtering
approaches that represent the belief state as a collection of
complete assignments to the variables {Xt

1, X
t
2 . . . X

t
N} fail

with an unwieldy space complexity. Even approaches that try
to approximate the set of all solutions using ellipsoids or
bounding hyperplanes fail since there exist cases where the
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Fig. 5: Illustrates the correctness arguments of the CRC
filter. The belief state at time t + 1 is the set of all possi-
ble assignments to the variables in {Xt+1

1 , Xt+1
2 . . . Xt+1

N }
that are consistent with the observations at time t + 1 and
have a consistent extension to the belief state at time t.
Assuming, by induction, that the belief state at time t is
represented as a set of CRC constraints on {Xt

1, X
t
2 . . . X

t
N},

the belief state at time t + 1 can also be represented as a
set of CRC constraints on {Xt+1

1 , Xt+1
2 . . . Xt+1

N }. This is
because the transition constraints between {Xt

1, X
t
2 . . . X

t
N}

and {Xt+1
1 , Xt+1

2 . . . Xt+1
N } are also CRC. The two bounding

rectangles help visualize the inductive arguments.

solutions to a set of CRC constraints cannot be represented
compactly using geometrically closed regions [21].

The belief state at time t+1 is the set of all possible assign-
ments to the variables in {Xt+1

1 , Xt+1
2 . . . Xt+1

N } that are not
only consistent with the observations at time t+1 but also have
a consistent extension to the belief state at time t through the
transition constraints. Since the observations, transitions, and
by induction, the belief state at time t are all expressed using
CRC constraints, establishing PC on these CRC constraints
induces a new set of CRC constraints on the variables in
{Xt+1

1 , Xt+1
2 . . . Xt+1

N }. These induced CRC constraints are
retained as a representation of the belief state at time t + 1.
After establishing PC, any solution to these CRC constraints
can be extended to the variables in {Xt

1, X
t
2 . . . X

t
N}, which,

in turn by induction, can be extended to all previous variables
as well. This proves the correctness of the belief state update
procedure that employs PC. The time complexity of updating
the belief state is therefore O(N3D2) since it requires estab-
lishing PC on CRC constraints over 2N variables [20].

IV. THE DISTRIBUTED CRC FILTER

The distributed state estimation problem arises in many real-
world applications. Appropriate distributed filtering techniques
are therefore needed to address this problem. The distributed
Kalman filter, for example, is used for distributed state es-
timation in WSNs [2], [22], which in turn can be used for
monitoring large-scale systems [3]. Many real-world problem
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Fig. 6: Shows a network of 5 nodes {n1, n2, n3, n4, n5} and 6
system variables X = {X1, X2, X3, X4, X5, X6}. Each node
ni is associated with a subset Si ⊆ X of system variables that
it is interested in. An assignment of values to these variables
constitutes an Si-partial state. ni maintains an Si-partial belief
state B(St

i ) at all times: B(St
i ) is the set of all valid Si-partial

states at time t.

domains, however, are better described using constraint mod-
els instead of stochastic models required for the distributed
Kalman filter. One such example is in distributed monitoring of
plan execution. Here, plans are naturally described using pre-
conditions and effects of actions which can be easily converted
to constraint models. We therefore develop the distributed
CRC filter to serve as a logical analogue of the distributed
Kalman filter. We show that the same intuitions about CRC
constraints and the remarkable effects of establishing PC on
them can be extended to distributed settings as well.

In a distributed setting, as shown in Figure 6, there are
L nodes {n1, n2 . . . nL} on a network. We assume that the
network is connected so that any two nodes can communi-
cate with each other by staying oblivious to load balancing
algorithms implemented in the physical layer. Each node
ni is interested in a subset Si ⊆ {X1, X2 . . . XN} of the
system variables. If Si = {Xi1 , Xi2 . . . Xi|Si|

}, we define
St
i = {Xt

i1
, Xt

i2
. . . Xt

i|Si|
} to reason about the dynamically

evolving subsystems. Since the variables in St
i do not suffice

to define the global state of the system at time t, we refer
to an assignment of values to the variables in St

i as an
Si-partial state at time t. An assignment of values to all
variables in St

i is a valid Si-partial state at time t if there
exists a consistent extension of this assignment to all variables
in

⋃
t′≤t{Xt′

1 , X
t′

2 . . . Xt′

N} \ St
i . Each node is required to

maintain B(St
i ), the Si-partial belief state at time t, that

comprises of all valid Si-partial states at time t. Without loss
of generality, we also assume that at time t, a node ni can
make observations only on variables in St

i . If node ni receives
observations on variables not in St

i , it simply forwards them
to the relevant nodes interested in them.

Figure 7 shows how properties of CRC constraints can
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Fig. 7: Illustrates the correctness arguments of the distributed
CRC filter. The large ellipses indicate the global states at times
t − 1, t and t + 1. The smaller ellipses within each of them
indicate the partial states at these times. Three partial states,
corresponding to subsets Si, Sj and Sk, are shown for each
of these times. By induction, we assume that all Si/j/k-partial
belief states at time t′ are represented as CRC constraints on
the variables in St′

i/j/k for t′ ≤ t. Since all other constraints
between time t and time t + 1 are also CRC, the idea is
to establish PC on all these constraints using a distributed
algorithm and retain only the CRC constraints between the
variables in St+1

i/j/k as the Si/j/k-partial belief state at time
t+1. The two bounding rectangles help visualize the inductive
arguments.

be used to design an efficient distributed logical filter. In
this distributed CRC filter, B(St

i ), the Si-partial belief state
maintained by node ni at time t, is represented using a set of
CRC constraints on the variables in St

i . The space complexity
for representing B(St

i ) is therefore only quadratic in the
largest domain size of any variable and the total number of
variables in St

i . The Si-partial belief state at time t+1 is the
set of all possible assignments to the variables in St+1

i that
are not only consistent with the observations at time t + 1
but also have a consistent extension to all other variables in⋃

t′≤t+1{Xt′

1 , X
t′

2 . . . Xt′

N} \ S
t+1
i .

Assume by induction that the set of CRC constraints be-
tween the variables in St

i represents B(St
i ) and the set of CRC

constraints between all variables in {Xt
1, X

t
2 . . . X

t
N} repre-

sents the global belief state at time t, i.e., the set of all assign-
ments to variables in {Xt

1, X
t
2 . . . X

t
N} that have a consistent

extension to all other variables in
⋃

t′<t{Xt′

1 , X
t′

2 . . . Xt′

N}. If
the possible initial states are specified using CRC constraints
on {X0

1 , X
0
2 . . . X

0
N}, this property required for the base case

of the induction can be enforced simply by establishing PC
on {X0

1 , X
0
2 . . . X

0
N} and retaining only the CRC constraints

between the variables in S0
i . B(St+1

i ) can be obtained by es-
tablishing PC on all the CRC constraints between the variables
in {Xt

1, X
t
2 . . . X

t
N} ∪ {X

t+1
1 , Xt+1

2 . . . Xt+1
N } and retaining

only the CRC constraints between the variables in St+1
i . The

reason for this follows from the fact that all constraints are

CRC, and after PC, any consistent assignment of values to
the variables in St+1

i can be extended to all other variables in
{Xt

1, X
t
2 . . . X

t
N}∪{X

t+1
1 , Xt+1

2 . . . Xt+1
N }\St+1

i . Moreover,
by induction, we also know that any consistent assignment
of values to {Xt

1, X
t
2 . . . X

t
N} can be extended to all other

variables in
⋃

t′<t{Xt′

1 , X
t′

2 . . . Xt′

N}. Put together, therefore,
any consistent assignment of values to variables in St+1

i can be
extended to all other variables in

⋃
t′≤t+1{Xt′

1 , X
t′

2 . . . Xt′

N}\
St+1
i . This proves the correctness of the PC-based procedure

for updating the Si-partial belief states at each node. A similar
argument also proves that the set of CRC constraints between
the variables in {Xt+1

1 , Xt+1
2 . . . Xt+1

N } retained after PC
represents the global belief state at time t+ 1.

We note that each node ni maintains not only the current
set of CRC constraints between the variables in St

i but also
any other CRC constraint that involves at least one of the
variables in St

i . This is because the global belief state at time
t relies on all these CRC constraints—including the ones that
involve variables from two different St

i and St
j . These CRC

constraints between any two variables in {Xt
1, X

t
2 . . . X

t
N} are

all important for updating the partial belief states at time t+1.
From the foregoing arguments, it is clear that the problem

of computing partial belief states for each node is now reduced
to the problem of establishing PC on CRC constraints using a
distributed algorithm. Although distributed PC algorithms are
not well studied, some attempts can be found in [23], [24].
The difficulties faced in designing an efficient distributed PC
algorithm are analogous to the ones faced in designing a dis-
tributed Kalman update procedure for stochastic models where
heuristic notions akin to innovations, signs of innovations,
etc. have to be used [4], [5], [22]. While the space and time
complexities of the distributed CRC filter are clearly upper
bounded by those of the centralized CRC filter, the message
complexity of the distributed CRC filter matches the message
complexity of the distributed PC algorithm that it relies on. We
also note that, unlike in a distributed Kalman filter, retrieving
a valid state from the global belief state does not require
distributed PC since CRC constraints can be solved directly
using a very efficient randomized distributed algorithm [25].

V. APPLICATION DOMAINS

There are many problem domains in which logical equiva-
lents of the Kalman filter can be applied. For example, both
the centralized as well as the distributed CRC filters are
particularly important in monitoring the executions of plans.
Although the planning problem itself is typically hard, the
execution of an already generated valid plan is usually flexible
under some simple temporal constraints [23]. These simple
temporal constraints are, in fact, known to be CRC [26]. In
temporal reasoning, CRC constraints also arise in schedul-
ing problems that are described using restricted disjunctive
temporal constraints [26], temporal constraints with domain
rules [14], or temporal constraints with taboo regions [27].
Another domain in which CRC constraints arise frequently is
in geometric reasoning with max-distance constraints [15]. Yet



another example where CRC filtering is important is in multi
-robot localization [13].

In some sense, the CRC filter can be deemed as being
important simply because it is the logical analogue of the
Kalman filter. Even if the constraint-based description of the
world does not make use of only CRC constraints, the CRC
filter can still serve as an approximation or pave the way
for a more expressive logical filter. The same is true for the
distributed CRC filter as well.

VI. CONCLUSIONS AND FUTURE WORK

We studied the CRC filter as a logical equivalent of the
Kalman filter. In centralized settings, the CRC constraints play
the role of Gaussians; and the belief state is updated using
PC. In distributed settings, where nodes of a network observe
different subsets of variables from a larger system, we showed
that PC can be used again to extend a centralized CRC filter to
a distributed CRC filter. Our distributed CRC filter maintains
compact representations of the partial belief states at each
node at all times and relies on distributed PC algorithms. The
message complexity of updating the partial belief states at each
node matches that of the distributed PC algorithm.

There are many directions for future work. One direction is
to apply CRC filters as approximations to general constraint
models (in the same sense that Kalman filters are used with
approximations). Another interesting direction is to generalize
CRC filters based on PC to richer classes of constraints based
on higher levels of local consistency. Yet another direction is
to combine CRC filters with Kalman filters when the world is
described using constraints as well as stochastic models.
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