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Summary

For solving distributed constraint optimization problems (DCOPs), we
develop CCG-Max-Sum, a distributed variant of the lifted min-sum
message passing algorithm (Xu et al. 2017) based on the Constraint
Composite Graph (Kumar 2008). We experimentally showed that
CCG-Max-Sum outperformed other competitors.
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Distributed Constraint Optimization Problems (DCOPs): Motivation

Cooperative multi-agent system interact to optimize a shared goal. This
can be elegantly characterized by DCOPs (Modi et al. 2005; Yeoh et al. 2012).

• Coordination and resource allocation (Léauté et al. 2011; Miller et al.
2012; Zivan et al. 2015)

• Sensor networks (Farinelli et al. 2008)
• Device coordination in smart homes (Fioretto et al. 2017; Rust et al.
2016)

3



Distributed Constraint Optimization Problems (DCOPs)

• There are N agents A = {a1,a2, . . . ,aN}, each of which controls one or
more variables in X = {X1, X2, . . . , XN}, specified by a mapping function
α. No single variable is controlled by two agents.

• Each variable Xi has a discrete-valued domain Di.
• There are M cost functions (constraints) F = {f1, f2, . . . , fM}.
• Each cost function fi specifies the cost for each assignment a of
values to a subset xfi of the variables (denoted by fi(a|xfi)).

• Find an optimal assignment a = a∗ of values to these variables so as
to minimize the total cost: f (a) =

∑M
i=1 fi(a|xfi).

• Known to be NP-hard.
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DCOP Example on Boolean Variables
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f (X1, X2, X3) = f1(X1) + f2(X2) + f3(X3) + f12(X1, X2) + f13(X1, X3) + f23(X2, X3)
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DCOP Example: Evaluate the Assignment X1 = 0, X2 = 0, X3 = 1

X
1

X
2

X
3

X
2

1

0

10
X
3

1.0

0.6 1.3

1.1

X
1

1

0

10
X
3

0.7

0.4 0.9

0.8

X
1

1

0

10
X
2

0.7

0.5 0.6

0.3

X
1

1

0

0.2

0.7

X
3

1

0

1.0

0.1

X
2

1

0

0.8

0.3

f (X1 = 0, X2 = 0, X3 = 1) = 0.7+ 0.3+ 1.0+ 0.5+ 1.3+ 0.9 = 4.7
(This is not an optimal solution.) 6



DCOP Example: Evaluate the Assignment X1 = 1, X2 = 0, X3 = 0

X
1

X
2

X
3

X
2

1

0

10
X
3

1.0

0.6 1.3

1.1

X
1

1

0

10
X
3

0.7

0.4 0.9

0.8

X
1

1

0

10
X
2

0.7

0.5 0.6

0.3

X
1

1

0

0.2

0.7

X
3

1

0

1.0

0.1

X
2

1

0

0.8

0.3

f (X1 = 1, X2 = 0, X3 = 0) = 0.2+ 0.3+ 0.1+ 0.7+ 0.6+ 0.7 = 2.6
This is an optimal solution. Using brute force, it requires exponential time to find. 7
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Two Forms of Structure in DCOPs
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Graphical Structure

• Graphical: Which
variables are in which
cost functions?

• Numerical: How does
each cost function relate
the variables in it?

How can we exploit both
forms of structure
computationally?
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Minimum Weighted Vertex Cover (MWVC)
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Each vertex is associated with a non-negative weight. Sum of the weights on the
vertices in the vertex cover is minimized. 9



Projection of Minimum Weighted Vertex Cover
onto an Independent Set
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Projection of MWVC onto an Independent Set

Assuming Boolean variables in DCOPs

• Observation: The projection of MWVC onto an independent set looks
similar to a cost function.

• Question 1: Can we build the lifted graphical representation for any
given cost function? This is answered by (Kumar 2008).

• Question 2: What is the benefit of doing so?
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Lifted Representation: Example
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f (X1, X2, X3) = f1(X1) + f2(X2) + f3(X3) + f12(X1, X2) + f13(X1, X3) + f23(X2, X3)
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Lifted Representations: Example
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Constraint Composite Graph (CCG)
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MWVC on the Constraint Composite Graph (CCG)
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An MWVC of the CCG encodes an optimal solution of the original DCOP!

Xi ∈ MWVC =⇒ Xi = 1; Xi 6∈ MWVC =⇒ Xi = 0.
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Max-Sum and CCG-Max-Sum

• Max-Sum (Farinelli et al. 2008; Stranders et al. 2009)
• is a distributed variant of belief propagation
• has information passed locally between variables and constraints

• CCG-Max-Sum Algorithm
• Perform message passing iterations on the MWVC problem instance of
the CCG

• Messages are passed between adjacent vertices
• Is a distributed variant of the lifted min-sum message passing
algorithm (Xu et al. 2017)

• Despite the names, since our goal is to minimize the total cost, all max

operators are replaced by min operators.
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Operations on Tables: Min

minX1

{
X1

X2 0 1

0 1 2
1 4 3

}
=

X1
0 1
1 3
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Operations on Tables: Sum

X1
X2 0 1

0 1 2
1 4 3

+
X1
0 5
1 6

=
X1

X2 0 1

0 1 + 5 = 6 2 + 5 = 7
1 4 + 6 = 10 3 + 6 = 9
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Max-Sum

• A message is a table over the
single variable, which is the
sender or the receiver.

• A vertex of k neighbors
1. applies sum on the
messages from its k− 1
neighbors and internal
cost function, and

2. applies min on the
summation result and
sends the resulting table
to its kth neighbor.
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Max-Sum
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CCG-Max-Sum: Finding an MWVC on the CCG

• Treat MWVC problems on the CCG as DCOPs and apply Max-Sum on
them.

• Messages are simplified passed between adjacent vertices.

µiu→v = max

wu − ∑
t∈N(u)\{v}

µi−1t→u, 0

 ,
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Motivation: Kernelization and the Nemhauser-Trotter Reduction

• The MWVC problem is known to be NP-hard.
• To solve such a problem, an algorithm that reduces the size of the
problem in polynomial time is desirable.

• A kernelization method is one such algorithm.
• The Nemhauser-Trotter (NT) Reduction is one kernelization method
for the MWVC problem.

• The Constraint Composite Graph enables the use of the NT reduction.
22



The Nemhauser-Trotter (NT) Reduction
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Experimental Setup

• Algorithms
• CCG-Max-Sum
• CCG-Max-Sum-k: CCG-Max-Sum + NT reduction
• Max-Sum (Farinelli et al. 2008; Stranders et al. 2009)
• DSA (Zhang et al. 2005)

• Benchmark instances
• Grid networks (2-d 10× 10 grids)
• Scale-free networks (Barabási-Albert model (Barabási et al. 1999)),
m = m0 = 2

• Random networks (Erdős-Rényi model (Erdős et al. 1959)), p1 = 0.4 and
p1 = 0.8, max arity = 4

• 30 benchmark instances in each instance set, 100 agents/variables
• Costs are uniformly random numbers from 1 to 100. 24
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Conclusion and Future Work

• Conclusion
• We developed CCG-Max-Sum, a variant of the lifted min-sum message
passing algorithm (Xu et al. 2017), for solving DCOPs.

• We combined NT reduction with CCG-Max-Sum.
• We experimentally showed the advantage of CCG-Max-Sum.

• Future Work
• Investigate mixed soft and hard constraints
• Incorporate Crown reduction (Chlebík et al. 2008)
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